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Abstract- This study proposes a control system model for mobile robots navigating in unknown environments. The proposed
model includes a neuro-fuzzy Extended Kalman Filter for localization task and a behavior-based fuzzy multi-controller
navigation module. The neuro-fuzzy EKF, used for estimating the robot’s position from sensor readings, is an enhanced
EKF whose noise covariance matrix is progressively adjusted by a fuzzy neural network. The navigation module features
a series of independently-executed fuzzy controllers, each deals with a specific navigation sub-task, or behavior, and a
multi-objective optimizer to coordinate all behaviors. The membership functions of all fuzzy controllers play the roles of
objective functions for the optimizer, which produces an overall Pareto-optimal control signal to drive the robot. A number
of simulations and real-world experiments were conducted to evaluate the performance of this model.
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1 INTRODUCTION

Mobile robot navigation is one of the most challen-
ging problems in robotics. Target-reaching is a fun-
damental navigation task for any autonomous mobile
robot, for which the robot must be capable of perceiving
its surrounding environment via meaningful data ex-
tracted from sensors, localizing robot’s position in the
environment, planning the path to the intended target,
and controlling the actuators to drive the robot to reach
that target [1]. Given the robot’s locomotion mechanism
and sensors, one must design an efficient navigation
architecture and methods for localization and control.

Localization is to estimate the robot’s position and
orientation relative to the environment’s reference
frame from sensor data. Localization methods are ge-
nerally divided into three categories: dead reckoning,
absolute positioning, and sensor fusion [2]. Dead recko-
ning methods estimate the position by tracking the
robot’s trajectory since the last known position based on
instantaneous speed and heading direction. However,
in dead reckoning the estimation errors will be accumu-
lated over time if no compensation is provided. Unlike
dead reckoning, absolute positioning methods try to
calculate the robot’s relative position in the reference
frame, independent from previous estimates. Though
absolute positioning does not suffer from accumulative
errors, this approach often requires complex compu-
tations and is dependent on structural features of the
environment. The sensor fusion approach employs both
relative and absolute measurements in order to achieve

more accurate estimates. Several fusion techniques have
been proposed, such as Kalman filtering [3], Bayesian
filtering [4], and particle filtering [5]. Among them, the
Extended Kalman Filter (EKF) for non-linear estimation
is a powerful method which combines multi-sensor
data to give optimal estimates in a statistical sense with
simpler structure and less time consuming than other
filers. In EKF, however, the choice of noise covariance
matrices greatly affects the estimation accuracy. Due
to random nature of noise, theses matrices vary from
time to time and therefore are difficult to determine. In
practice, noise covariance matrices are often assumed
to be fixed and chosen via off-line processes. This sim-
plification may cause the EKF to diverge in some cases.

The robot’s navigation module features the integra-
tion of all components responsible for navigation tasks,
including perceptual interpretation of sensor data, lo-
calization, and path planning. There are two main
categories of navigation architectures: the hierarchical
architecture and the reactive, or behavior-based, architec-
ture [6]. The hierarchical architecture is characterized
by sequential steps of sensing, planning, and acting,
based on a known model of the environment. This
architecture is appropriate only for static and struc-
tured environments. For robots operating in unknown
environments, the behavior-based architecture is more
commonly used. In behavior-based systems, a complex
navigation task is split into sub-tasks, or behaviors.
Each behavior, dealing with a specific problem na-
vigation, is implemented by an independent control
module. The output signals of all behavioral control
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modules are then combined in accordance with some
global navigating objective to generate an overall con-
trol signal. The main challenge with behavior-based
systems is how to combine behaviors, termed command
fusion or behavior coordination, to efficiently achieve the
navigation objective. Many command fusion techni-
ques have been proposed, such as switching [7], mo-
tor schema [8], and decentralized information filter
(DIF) [9], but the most popular approach employed by
mobile robot navigation systems has been fuzzy-based
fusion [10-14]. In a fuzzy-based system, each behavior
is implemented by a fuzzy controller. The output fuzzy
sets from all fuzzy controllers are combined and then
defuzzified to generate the overall control signal. This
approach is simple to implement and quite efficient
in navigation. The fusion, however, is not optimal as
defuzzification processes often result in different types
of control values [15, 16]. To overcome this weakness,
a method based on multi-objective optimization theo-
ries, called MOASM, was proposed [17]. This method
uses a set of objective functions, each is assigned to
one behavior, to transform control signals into values
reflecting the grades of behavioral objectives. A multi-
objective optimization process is applied to find the
solution which best maximizes all the outputs of ob-
jective functions. The main advantage of this method
is its theoretical approach to secure the optimality of
the found solutions. However, the lack of a framework
for designing objective functions, which are usually
complicated, limited its practical use.

In this study, a robust navigation system for mobile
robots operating in unknown environments is propo-
sed. This closed-loop navigation system places a locali-
zation module on the feedback path that estimates the
robot’s position from sensor readings. The localization
module is basically a neuro-fuzzy Kalman filter, called
FNN-EKF, an enhanced Extended Kalman Filter (EKF)
in which the noise covariance matrix is adjusted by a
Fuzzy Neural Network (FNN) at each iteration. The
FNN itself is an improved fuzzy controller whose mem-
bership functions are tuned by a neural network. The
proposed neuro-fuzzy Kalman filter can adapt better
than the original EKF to varying noise conditions.

A behavior-based fuzzy multi-controller navigation
method, called BBFM, was also proposed. Each beha-
vior of this behavior-based navigation system is repre-
sented by a fuzzy controller which implements only
procedures for fuzzification and fuzzy inference. Each
output of a fuzzy controller is considered as the value
of an objective function representing the grade of a
behavior’s objective. The outputs of all fuzzy controllers
are then used as inputs for a multi-objective optimizer
which is tasked with finding the optimal value for the
overall control signal.

This paper has four more sections. Section II presents
the structure and components of the proposed naviga-
tion system. Section III provides simulation results and
analyses of system performance in several operational
scenarios. Section IV shows some experiments with
the system implemented in a real robot. Section V
concludes this work.
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Figure 1: The mobile robot’s feedback navigation sy-
stem.

Target (X4,y4,04)

Figure 2: The differential-drive wheeled mobile robot
and its parameters.

2 PROPOSED NAVIGATION SYSTEM

In this section, the overall structure of the proposed
navigation system is described. After that, detailed
implementation of each primary module is presented.

2.1 The overall structure

Given the robot together with its sensory system,
the mission of the navigation system is to navigate
the robot from an initial position to a desired target
without colliding with obstacles and getting trapped in
any area of an unknown environment. To carry out this
task, a control system with two primary modules, the
positioning and the behavior-based control, is proposed
as shown in Figure 1. Details of each module are
presented following the description of the model of
mobile robot.

The model of mobile robot we employ for evalua-
ting the proposed navigation system is a differential-
drive wheeled robot with non-holonomic constraints.
Its parameters are shown in Figure 2, where R is the
wheel diameter, L is the distance between two wheels,
and the (x,y,0) represents the position and heading
orientation of the robot. For the sake of convenience,
whenever we refer to the robot’s position in this paper,
we mean its position and heading orientation. The
kinematic equation in discrete-time domain of the robot
is presented by [18]:

Xp = Xp—q + tp_1Ts cosBr_1
Yk = Yr—1 T U1 Ts sin 6y )
O = 01 + wi_1Ts.

in which, T is the sampling period, u; and wy are

respectively the tangential velocity and angular velocity
at the sampling time of k.
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Figure 3: Arrangement of ultrasonic sensors on the
robot.

To sense the environment, the robot is equipped with
eight ultrasonic sensors with the measuring range from
0.04 m to 4 m. They are clustered into three groups
of left, right, and front as shown in Figure 3. The
measuring value of each group is the minimum value
of all sensors in that group:

dr = min(dq,dp, d3),
df = min(dy,ds), @
d; = min(dg,dy,dsg),

where d; is the distance to obstacles measured by
sensor 1.

2.2 Positioning module

In order to reach the target, the robot first needs to
know its position and orientation in the environment.
Those information can be obtained by using measu-
rements of the optical encoders and compass sensor.
However, the measurements may subject to noise re-
sulting in inaccurate positioning. To deal with this
problem, the extended Kalman filter (EKF) has been
proven to be effective. It incorporates information of
the robot kinematics and sensor measurements so that
the estimated result is more reliable. The incorporation
is conducted via two steps: the time update to predict the
robot position and orientation based on the kinematic
model, and the data update to correct the prediction
based on sensory measurements.

Let x = (x,1,6)T be the state vector. This state can
be observed by some measurements, z. These measu-
rements are described by a function, /, of the robot
state and a Gaussian noise process, v. Denoting the
function (1) as f, with an input vector u = (u,w)T
and the process noise w. The robot system then can
be described by:

Xe = f(Xk—1, Uk—1, Wg_1) 6)
zi = h(xt, i)
where k € N, x, w € R", z, v € R", u € R/, (v,w)
are Gaussian, uncorrelated, white, with zero-mean and
covariance matrix (P, Q) respectively.
o Prediction with time update equations

)A(k_ = f()A(kfl, Uj_1, 0), (4)
P = Ar 1P 1 Al + Qe )

where X, is the priori state estimate at step k given
knowledge of the process prior to step k —1, P, de-
notes the covariance matrix of the priori prediction
error.

o Correction with measurement update equations

Ky = P, HY [HePe HY + R ™, (6)
X = )A(]? + Kk[zk - h(f(;/ 0)]/ )
Py = [I — KgHi P, ®)

where X; € R" is the posteriori state estimate at step
k given measurement z;, K is the Kalman gain,
and Py is the covariance matrix of the posteriori
estimate error.

In implementation, the efficiency of the EKF depends,
to a great extend, on the accuracy of noise covariance
matrices Q and R to be determined. In our system,
we model the process noise as being proportional to
the angular velocities of the left and right wheels.
This approach is adequate provided that the systematic
errors are eliminated by the calibration process. The
variances of the process noise then equal to dw? and
dw%, where § is a constant determined by experiments.
Thus the covariance matrix Qy is given by:

C[ew?(k) 0
Q=170 swi(v ] ©)

With covariance matrix R, we determine it based
on the residual between the actual and the predicted
measurements, 1, = z; — h(f(k_ ,0). This residual, gained
by K, is the correction factor to form the posterior
estimate X; from the prior estimate %X, . It also reflects
the accuracy of the estimation value. A small value of
1;. implies a good estimation because the predicted me-
asurement is closed to the real one. Consequently, we
can exploit ry as an indicator to adjust Ry. Specifically,
we present Ry as:

Ry = Rp-1 + ARy, (10)

where ARy is an adjustable factor. Let Sy be the covari-
ance of ry:

Sk = HyP H{ + Ry, (11)

and Cj be the average covariance of r in N recent
estimations:

1 k
Co=+ Y, (12)
j=k—N+1

The value of ARy is then adjusted in accordance to the
difference, Dy, between S and Cy:

Dy = S — Cy. 13)

If Dy = 0, ARy is kept unchanged. If Dy > 0, ARy is
decreased. Otherwise, ARy is increased. The amount of
decrease or increase should depend on the value of Dj.
We thus design a fuzzy controller for the adjustment.
The fuzzy controller has three input variables Dy =
{Positive(P), Zero(Z), Negative(N)}, the output variable
AR; = {Decrease(D), Maintain(M), Increase(I)}. The
membership functions of input/output variables are
defined by Gaussian (G) and Sigmoid (S) fuzzy set
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Figure 4: The fuzzy neural network.

such as:

—(x—c ,)2

G x = <,
auss(x) 7 (14)
Sigmoid(x) = e

where a;,b;, ¢j,0j are the distinct values for each mem-
bership function and learned by fuzzy neural network.
The defuzzification is accomplished by the centroid
method:

L Xip(xi)

P = ) (1
where x; is the ith domain value and p(x;) is the truth
membership value for that domain point.

Though the fuzzy controller provides an adaptive
adjustment of ARy, the determination of coefficients
(a;,b;) and (cj,07) during implementation still requires
manual customization. We overcome this limitation by
designing a neural network that automatically tunes
(a;,b;) and (cj,0}). The neural network consists of five
layers as shown in Figure 4. Given crisp training set
{(D1,AR7), (D3, ARy),..., (Da, ARpp)}, the measure of
error for the mth training pattern is defined as following
equation

1

Em =5 (zm — ARy, m=1.M (16)

where z, is the computed output form of the
fuzzy neural network. The parameters a;, b;, Cj, 0j, i =
1,2,3,j = 1,2 are learned by the steepest descent
method as follows
ai(t+1) = a;(t) — %5z bi(t 4+ 1) = bi(t) —n 22,
¢t +1) = ¢i(t) — %", o5(t +1) = o5(t) — %2
17)

]

where # > 0 is the learning constant and t is the
number of the adjustments. These learned coefficients
are then used to update membership functions of the
fuzzy controller. We call our approach the neuro-fuzzy
extended Kalman filter.

2.3 Control module

The position of robot determined by the positioning
module is fed to the control module together with the
target and environment information to generate control

Objective functions

|
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Figure 5: The BBFM navigation module.

signals as shown in Figure 1. The control module is
implemented using the behaviour-based approach that
subdivides the navigation task into small and easy-to-
manage behaviours. For our task assigned, the beha-
viours include: (i) reaching the target from an arbi-
trary position, (ii) avoiding obstacles. Each behaviour
is implemented by a fuzzy controller so that it can
cope with uncertainties and incompleteness of sensory
information. The coordination between behaviours is
accomplished by a multi-objective optimization pro-
cess. The rationale is to achieve an optimal solution that
can guarantee a suitable trade-off between a multitude
of conflicting behaviours’ objectives.

In multi-objective optimization, the objective of each
behaviour is quantified through a function, called the
objective function, that assigns to each input a value
reflecting its objective’ desirability. Interestingly, if we
remove the defuzzification procedure in the design
process of fuzzy controllers, the output of each behavior
will be a fuzzy membership function that encrypts the
semantic meaning of the objective function. This way,
the fuzzy control and multi-objective optimization can
be combined as shown in Figure 5.

In this section, we first describe the implementation
of behaviours using fuzzy logic. We then present our
approach to fuse them using multi-objective optimiza-
tion.

2.3.1 Obstacle avoidance: Due to non-holonomic con-
straints, we first define three additional variables for
the implementation of behaviours: p defined by (18) is
the distance from the center of the robot to the target; «
defined by (19) is the angle between the robot heading
and the vector connecting the robot center with the
target.

p=/(xa— 2+ (va—v)?) (18)
a = arctan(y; —y, x4 — x) — 0, a € [—71, 71). (19)

The obstacle avoidance behaviour then consists of
four input variables d,, d iz d;, and «, and two output
variables u and w as shown in Figure 5. Their linguistic
terms and membership functions are defined as shown
in Figure 6.

Twenty-eight control rules defined for the behavior
are presented in Table ??. Let ug,, (1) and pg,, (@)
be respectively the inference results for u# and w of the
kth rule in this table. The implication results according



T. T. V. Nguyen et al.: A Robust Mobile Robot Navigation System using Neuro-Fuzzy Kalman Filtering and Optimal Fusion...51

1N M F

0 05 1 15 2 25 3 35dm -3 2 4 0 1 2 3a(ad
(@) (b)

u

S M L v

! WNo No 2o Py PN

0 02 04 06 08 tlums) 4 3 -2 -1 0 1 2 3 o(ads)
(© (d)

Figure 6: The linguistic terms and membership functi-
ons of input and output variables of the obstacle avoi-
dance behavior: (a) d;, dy, dr; (b) &; () u; (d) w.

Table I: Rules for Obstacle Avoidance

Collisions || Rule Input Output
d [ df [ d, [ o u [ w
1 N | N | F S Po

(B2 |
— 2 [F[N|N M Po
W I 3 M| N | N M Po
4 F|IN| M N LPo
—— 5 N | N | F M LNo
e 6 N | N | M M No
- 7 F | N|F M LPo
W 8 M| N | F M No
9 F|IN|M M Po
- 10 N | M|N M Po
I ¥ ' 11 N N N S Po
12 M| N | M S Po
13 N | M| M M No
14 N |M|F M No
15 N | F | M M No
16 N | F F | LN S LNo
l - 17 N | F F N S No
18 N | F | F V4 L Zo
19 N|G|G|LP|L Zo
20 N | F F p L Ko
21 M| M| N M Po
22 F|M|N M Po
23 M| F | N M Po
S 24 F F | N | LN L Zo
- I 25 F F | N N L Zo
26 F F | N Z L Zo
27 F F | N | LP S LPo
28 F|F|N| P S LPo

S:Small, M:Medium, F:Far, Z/Zo:Zero,LN/LNo:Large Negative,
N:Near, P/Po:Positive, N/No:Negative, LP/LPo:Large Positive

to the max-min method are then given by:

VROA (1/!) = max(ﬂROAJ (Ll), VROA,Q(u)/ ceey P‘ROA,zg (M))
HRoa (w) = maX(IuROA,l (w)r HRoaz (w>/ -+ rHRopps (w)>

20)

2.3.2 Goal reaching: The objective of goal-reaching
behavior is to control the robot to reach the target in
the shortest time. The behavior uses two input and

0 2 4 6 8 10 12 14 16 18 20 p(m)

Figure 7: The linguistic terms and membership function
of p.

Table II: Rules for Goal Reaching

Rule Input Output

o]« [u] w
1 N | Z S Zo
2 N | N S No
3 N | LN | S LNo
4 N | P S Po
5 N | LP S LPo
6 M| Z M Zo
7 M| N || M No
8 M| LN || M LNo
9 M| P M Po
10 M| LP || M LPo
11 F V4 L Zo
12 F | N L No
13 F | LN || L LNo
14 F P L Po
15 F |LP || L LPo

S:Small, N:Near, M:Medium, F:Far,
Z/Zo:Zero, N/No:Negative, LN /LNo:
Large Negative, P/Po:Positive,
LP/LPo:Large Positive, L:Large

two output variables as shown in Figure 5. Three of
them including the deflection angle « and the velocities
u and w have the same definition of linguistic terms
and membership functions as in the obstacle avoidance
behavior. The fourth variable, p, has the linguistic terms
and membership functions defined as shown in Fi-
gure 7.

The behavior has 15 rules defined as in Table II. Let
HRep, () and pre,, (w) be respectively the results of
the kth rule in the table for output variables u and w
by using Equation (??). The implication results for # and
w according to the max-min method are then given by:

HRgr (Ll) - maX(VRGR,l (u)' HRgr2 (u)/ -+ HRgr15 (Ll))
HRgr (w) = max(.uRGR/] (w)/ HRgro (w)/ -+ HRgr1s5 (w))
21
2.3.3 Behavior coordination: The behavior coordination
is carried out by using multi-objective optimization.
Let u;(y) be the ith objective function, y be an output
control signal (y = u or y = w), Y be the domain of
y, and N be the number of objective functions. The
optimal value of each output control signal is then the
solution of the following equation:

y = argmax(p(y), p2(y), .- un ()] (22)
According to the theory of multi-objective optimization,
there might not exist the optimal solution, ¥, of Equa-
tion (22), but only the "good enough" solution, y*, which
is the best fit for all objectives. This solution is called
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the Pareto-optimal solution or non-dominated solution
defined as follows: y* is the Pareto-optimal solution of
Equation (22) if there does not exist any y € Y such that
ui(y) > wi(y*) for at least one i and w;(y) > p;(y*) for
all j. In other words, the Pareto-optimal solution is the
one in which there is not other solution that improves
an objective without resulting in the deterioration of
at least another objective. In our system, the optimal
values of the overall control signal are determined by
the output membership functions of (20) and (21) as
follows:

= argmax[‘uR A(u)/,uR R(M }’
- argmax[}iRZA(w),]lRGGR( )]- =

NI

The lexicographic method used to find the Pareto-
optimal solutions of (23) are carried out as follows:

o Sorting all behaviors in descending order of im-
portance: obstacle avoidance and goal reaching.

« Sequentially solving equations P; by using discrete
values of # and w on their domains U and W until
a unique solution is obtained, or all equations are

solved:
Py max(pro, (1)),
u g P ggg;;[mem(u)],
Uy = {u|u solves P;} (24)
Py 2 maxfuro, (w)],
W'y Pa: maxfurg, (w)],

W; = {w|w solves P;}

« If more than one Pareto-optimal solution are obtai-
ned, the one with the greatest value of u and the
smallest value of w is chosen.

3 SIMULATIONS

Simulations have been conducted to evaluate the
efficiency of the proposed navigation system. Firstly,
the improved FNN-EKF is compared to the conventio-
nal EKF for positioning module. Secondly, the BBFM
module is independently evaluated by comparing to
two other popular navigation modules including the
MOASM [17] and CDB [11] without using FNN-EKF.
Finally, due to non systematic error, the navigation
system with BBFM &FNN-EKF as in Figure 1 is used
to perform the navigation task.

All cases are simulated in Matlab and use the same
robot configuration. Its mechanical parameters are set
as follows: R = 0.085 m, L = 0.265 m, u € [0,1.3]
m/s, and w € [—4.3,4.3] rad/s. The ultrasonic sensors
have the sensing range from 0 m to 4 m and the
radiation cone of 15°. They are arranged in front of
the robot as shown in Figure3 to cover the range of
160°. The universe of discourse of p is in the range of
[0, 20]. Details and results of each case are presented
as follows.

20p

15F

-5 0 5 10 0 200 400 600 800 1000 1200

Samples

() (b)

*  EKF *  EKF
03 — FNN-EKF | — FNN-EKF |

b
¥

o i 4 4
0 200 400 600 800 1000 1200 0 200 400 600 800 1000 1200
Samples Samples

() (©

*  EKF
— FNN-EKF

Samples

(©

Figure 8: Positioning by FNN-EKF: (a) True path, (b) R,
(c) Deviation in x direction, (d) Deviation in x direction,
(e) Deviation in x direction

3.1 Comparing the FNN-EKF to the EKF

The input noise covariance matrix Q is defined as (9)
where 6 = 0.01 is determined by experiments. The
reference matrix R, is also determined by experiments
as (25). The unknown assumed matrix is initially cho-
sen as R. The FNN-EKF tunes R by FNN while the
conventional EKF does not.

001 0 0 05 0 0
Res=| 0 001 0 |[;R=| 0 04 0
0 0 0018 0 0 01

(25)

A true path for positioning is presented Figure 8(a).
After some interations, the matrix R tuned by FNN
reaches to reference matrix (Figure 8(b)) that correctly
presents the nature of noise. Because the EKF operates
with fixed matrix R so that the deviations between
the true path and the estimated by EKF are larger
than by FNN-EKF in x, y, 6 direction respectively
(Figure 8(c), (d), (e)).
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Figure 9: Travelling paths of the robot navigated by
three modules: (a) BBFM, (b) MOASM, (c) CDB.

3.2 Comparing the BBFM to other modules

The position of robot is direct feedback and the noises
are not considered in this assessment. The MOASM
uses multi-objective optimization for command fusion.
It is implemented with three objective functions inclu-
ding avoiding obstacles, maintaining the target heading
and moving fast forward. Three objective functions
are equal two behaviors in the BBFM and defined as
in the origin [17]. The overall control signal is deter-
mined by using the lexicographic method. The CDB
is implemented with two behaviors as in the BBFM.
Each behavior is a fuzzy controller. The overall control
signal is determined by using fuzzy-meta rules and
defuzzification.

In this case, the operating environment is chosen to
be the same as in the original paper of MOASM [17].
The start position is (-2, -1.8, 180°) and the target
position is (-6, -4.8, 0°). Figure 9 shows the path of robot
generated by three various modules MOASM, BBEM,
and CDB. It can be seen that all modules successfully
navigate the robot to avoid obstacles and reach the
target. Table III shows the average performance of each
module, where the index smoothness is the average
absolute value of the difference between the current
and the previous orientation, thus showing how smooth
the maneuvers is; the index target error is the distance
between the final position of the robot and the target
position, thus evaluating the reachable ability to the tar-
get at the steady state; and the indexes traveled distance
and elapsed time are respectively the total distance
of the robot’s traveled path and the time taken to go
through that path. As can be inferred from Table III, the
BBFM is more efficient than the remaining architectures
in almost all criteria.

3.3 Combining the BBFM with FNN-EKF

The operating environment is chosen to be more like
an office with wall and bulkhead obstacles in this case.
The start position is (-7, -6, 0°) and the target is (-2.5,
-1.5, OO). In order to evaluate the efficiency of FNN-EKF

Table III: Navigation Results in Case 1

Index BBFM MOASM CDB

Traveled distance (m) 10.36 11.02 11.02

Elapsed time (second)  28.26 41,45 36.43

Smoothness (degree) 0.88 1.29 6.1
Target error (m) 0.05 0.2 0.05

Table IV: Navigation Results in Case 2

Index BBFM&FNN-EKF  BBFM
Traveled distance (m) 9.1 23.9
Smoothness (degree) 2.36 8.93

Target error (m) 0.05 0.05

Target
-2 I -2

! ;| T : ;Lg“I

-6 Start -6 Start °,g &%
—— —

-7 -7
-10 -8 -6 -4 -2 0 -10 -8 -6 -4 -2 0

(@) (b)

Figure 10: Traveling path of the robot navigated by: (a)
BBFM&FNN-EKF, (b) BBFM.

when combining in the navigation system, the compari-
son of the position of robot is shown in two scenarios:
navigation system uses only BBFM and in case uses
both BBFM and FNN-EFK as shown in Figure 10. The
Figure 11(a), (c), and (e) are comparisons the true posi-
tion, the position using only BBFM, and positon using
BBFM&FNN-EKF, while (b), (d), and (f) are the error
between the true path and the path using BBFM and
the true path and the path using BBFM&FNN-EKF in
x, y, and heading direction respectively. Table IV shows
the performance of two scenarios such as traveled path,
smoothness, and target error. It can be seen from these
results that navigation system using BBFM & FNN-EFK
is more efficient than that using only BBFM in unknown
and noise affected navigation system.

4 EXPERIMENTS

4.1 Experimental Setup

The robot used in experiments is a Sputnik ro-
bot [19] as shown in Figure 12. It is equipped with
three ultrasonic sensors DUR5200 at left, front and
right directions creating the scanning range from —60°
to 60°. To extend the scanning range to [-90°, 90°],
we added two additional ultrasonic sensors SRF05 to
the left and right sides of the robot. Each employs
a micro-controller PIC12F1572 to synchronize its data
with the main board of Sputnik robot. The linear and
angular velocities of the robot are respectively set to
[0, 0.5] m/s and [-3.7, 3.7] rad/s. The position of the
robot is determined via optical encoder sensors and the
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Figure 11: The comparison of the position of robot using BBFM and BBFM & FNN-EFK in: (a) and (b): x-axis, (c)

and (d): y-axis, (e) and (f): the orientation

orientation is determined by compass sensor. The robot
has a wireless module connecting it to a Wifi router
(Figure 12). The navigation system with BBFM module
and the FNN-EKF module is written in Matlab and
installed on a PC which communicates with the robot
through a Wifi router. The experimental environment
is an indoor office with the size of 4 m x 3 m and
changeable obstacles.

4.2 Experimental Results

Experiments were carried out with different configu-
rations of the environment and target position. In Case
1 (Figure 13(a)), the robot starts at A (0, 0, 90Y) and turns
right following to direction of the target. The robot does
not change the direction from A to B to avoid obstacles.

Wifi Router

= =
=~=M 802.11a

Figure 12: The Sputnik robot and its configuration to
communicate with the control computer.

>§ Sputnik Mobile Robot

At B, it turns left following to direction of the target
again to C. At C, the robot continuously adjusts its
direction and then goes straight along wall to the target
D (1.5, 3, 0°). Figure 13(b) shows the correspondence of
linear and angular velocities of the robot with those
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Table V: Navigation Results in Two Cases

Case Smoothness Elapsed Traveled Target
time distance  Error
(degree) ©) (m) (m)
1 1.36 255 3.48 0.04
2 4.3 30 4.29 0.06

movements, for instance, at B, the angular velocity
switches between the left and right directions to get the
target while the linear velocity gradually decreases near
to the target. There are also no changing of the angular
velocity when the robot is moving forward. The images
of the robot during operating are shown in Figure 13(c).

In Case 2 as shown in Figure 13, the environment
structure changed with more obstacles. The robot starts
at position (0, 0, 180%) and the target is set to (-1.1,
3, 0). The path from A goes along wall to B and
turns right to C. From C to D shows that the robot
successfully escapes obstacles two sequential times and
goes to E. Then the robot turns left and goes forward
to the target. Figure 13(e) shows the correspondence of
the robot’s velocity with its movements. Figure 13(f) are
some operating images of robot.

Table V shows the navigation performance in each
case. As can be inferred from the table, Case 1 introdu-
ces the best performance in smoothness ad elapsed time
because it is the simplest case. On the contrary, Case 2
has worse performance due to obstacles. Nevertheless,
the closeness between values of average linear velocities
determined by the ratio of traveling distance and elap-
sed time implies that the operation of robot is stable
and suitable for indoor environment.

5 CONCLUSIONS

In this paper, we have proposed a navigation sy-
stem for the mobile robot in unknown environments.
The performance of navigation system is improved by
using two effective main modules including the FNN-
EKFn module for localization and the BBFM module
for navigation. The FNN-EKF employs a neural-fuzzy
system to regulate the noise covariance matrix so that
the estimatiton is converged and more accurate. The
good localization result is used as observation data for
the BBFM. The BBEM inherits advantages of fuzzy logic
in dealing with uncertainties of sensor information and
also takes advantage of multi-objective optimization to
generate Pareto-optimal solutions for command fusion.
The results show that the proposed system possibly
navigates the robot to reach the target along an efficient
trajectory in environments with unpredictable obstacles
and noises.
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