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Abstract– The recovery of handwriting’s dynamic stroke is an effective method to help improve the accuracy of any
handwriting’s authentication or verification system. The recovered trajectory can be considered as a dynamic feature of
any static handwritten images. Capitalising on this temporal information can significantly increase the accuracy of the
verification phase. Extraction of dynamic features from static handwritings remains a challenge due to the lack of temporal
information as compared to the online methods. Previously, there are two typical approaches to recover the handwriting’s
stroke. The first approach is based on the script’s skeleton. The skeletonisation method has highly computational efficiency
whereas it often produces noisy artifacts and mismatches on the resulted skeleton. The second approach deals with the
handwriting’s contour, crossing areas and overlaps using parametric representations of lines and thickness of strokes. This
method can avoid the artifacts, but it requires complicated mathematical models and may lead to computational explosion.
Our paper is based on the script’s extracted skeleton and provides an approach to processing static handwriting’s objects,
including edges, vertices and loops, as the important aspects of any handwritten image. Our paper is also to provide
analysing and classifying loops types and human’s natural writing behavior to improve the global construction of stroke
order. Then, a detailed tracing algorithm on global stroke reconstruction is presented. The experimental results reveal the
superiority of our method as compared with the existing ones.

Keywords– Handwriting recognition, trajectory recovery, off-line system, skeletonisation, stroke order recovery.

1 Introduction

Handwriting recognition can be categorized into two
different types, online and offline, based on the method
of inputting and the available temporal information
of the handwriting. Online methods use the tablet
digitizer with a pen to record the movement and other
aspects of the handwriting such as pressure, veloc-
ity and drawing order as a function of time, while
in offline recognition systems, a scanned (static) two-
dimensional image of text or signature [1–3] is ob-
tained and processed without any additional temporal
information. Therefore, online methods have found in
various applications, for example, signature verification
in banking transactions, handwritten word recognition
for student identification [4] or a numerous of hand-
written word recognition software on smart phones.
Offline methods remain the technical challenges due
to the unavailability of temporal information of pen-
tip movement [5–8]. From the relations between special
points, edges, intersections of a static handwriting, one
can properly recover the pen-tip trajectory of the writer.
The extraction and recovery of dynamic information,
especially the stroke order, from static images therefore
plays an important role in improving the performance
of off-line systems.

1.1 Previous Works

Yasuhara et al. proposed a general and thorough
method of the handwriting’s skeleton analysis [9]. This
approach requires a set of heuristic rules and a complex
tracing algorithm after implementing the process of
skeleton analysis. This method could recover handwrit-
ings with a single stroke, many double-traced lines
and distinct start and end points. However, it does not
evaluate all the possible combinations, especially the
relations between loops and their neighboring edges.
Yasuhara’s method cannot be applied on multi-stroke
handwritings. Alternatively, Steinherz et al. [10] focused
on the investigation and detection of off-line loops
without involving any thinning process. This approach
is based on a novel loop theory with sophisticated al-
gorithms on the contour of the handwriting. Although
the experimental results of this approach were not
presented in their paper, their method however may
help the researchers have the basis on various loop
resolution scenarios. L’Homer [11] proposed a model
of strokes that a stroke is a family of a disc, its radius
and its position. By this model, L’Homer completely
excludes the process of skeletonisation and focuses
on the characteristics of stroke crossing types. This
method is best used with handwriting’s simple texts or
isolated characters but it is not suitable for the hand-
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writings which include many overlapped strokes like
signatures. Doermann et al. [12] proposed a method to
recover hidden loops based on the contour-dependent
blob analysis. This approach deals with the contour’s
shape investigation. Qiao and Nishiara [5] studied on
the skeletal image with a new framework of “Edge
Continuity Relation” to categorize the skeletal nodes
of the handwriting into different types. This approach
has some encouraging restoration results, but also has
several drawbacks on some handwritings with noisy
artifacts, unidentified start node, misidentified nodes
or high-degree nodes.

1.2 Our Major Contribution
In this paper, we introduce a method to restore the

stroke order not only from single-stroke handwritings,
but also from multi-stroke static handwritten images.
In addition, we propose a novel approach based on
loops generated in the handwriting to improve the
trajectory tracing performance. Human’s natural writ-
ing behavior can generate loops in writing by various
ways, specifically in Latin characters and digits. A
deep analysis in this problem could better restore the
stroke order and significantly increases the accuracy
in the recognition or verification process of the later
phases. In comparison with other existing methods,
we construct a more compact skeletal graph model
by categorizing human’s natural writing behavior in
different manners, with vertices, edges and loops as
the main targets. Our approach not only proposes a
systematic approach on the skeleton’s analysis and
tracing algorithm, but also aims to resolve the problems
of the restoration and recognition in a general and
clear framework of algorithms. Unlike most previous
works which focused only on single-stroke images, our
method can be applied to multi-stroke handwritings,
therefore can alleviate the problems of decomposing the
handwritings into sub-problems with each one dealing
with one stroke.

The rest of this paper is organized as follows. Sec-
tion 2 presents the preprocessing techniques applied on
the raw handwriting and the skeletonisation problems.
Section 3 describes the method of modeling the hand-
writing’s skeleton in details and deep investigation on
loop types. The problem of detecting start vertex, local
loop tracing method and the global tracing scheme is
presented in Section 4. The experimental results, com-
parisons with other methods and further discussion
are shown in Section 5. Finally, Section 6 derives the
paper’s conclusions.

2 Static Image Processing

In this section, we discuss the problems of the static
handwriting’s stroke recovery including the assump-
tions of the handwritings, the preprocessing methods
as well as the usually occurring errors of skeletonisation
process. The input image must satisfy the pre-defined
assumptions to prevent errors occurring during the
global stroke tracing phase. The static image is then

Table I
Assumption Summary of Handwritings

Satisfy Violate

1

(a) Clear start and end points (b) No start and end points

2

(c) 2-line intersection (d) 3-line intersection

3

(e) Double-traced line, indi-
cated by the thin ellipse

(f) Triple-traced line, indi-
cated by the thin ellipse

4

(g) Two separate loops (h) Two overlapped loops

preprocessed to remove noisy artifacts and, finally it
will be skeletonised before going to the process of the
skeletal graph modeling in Section 4.

To be successfully recovered of the handwriting’s
stroke, these assumptions are made for any input im-
age:

1) Clear terminal points: The stroke must have a dis-
tinctive start point and a distinctive end point.

2) 2-line intersection: If there exists any intersection,
it only consists of 2 intersecting lines.

3) 2-times traced: There exists no line which is traced
more than twice.

4) No loop overlap: If there exists greater than 2 loops
in the handwriting, they must be separate from
each other.

All of the sample scripts that satisfy and violate the
assumptions are shown in Table I.

Before the process of skeletonisation, the handwriting
must be preprocessed to remove the undesirable noisy
artifacts. The scanned image of the handwriting is
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Figure 1. A handwritten letter ’h’ and its skeleton

converted into a gray-level one. Then, it is turned into
a binary image, in which each pixel is presented by a
’0’ or a ’1’ corresponding to a black or a white pixel,
respectively. An image smoothing technique is used to
fill all the small holes in the image comparing to the
predefined size threshold of a hole. Possible noise in the
input such as spur points and isolated point clusters is
also removed from the image by a filtering operation.

Skeletonisation, or thinning process is one of the
most essential process that should be focused in this
paper. The skeletal image of the binary handwriting
is extracted using a classical thinning algorithm [13].
In other words, the handwriting is shrunk into a 1-
pixel-width skeleton. The skeletal image is the basis to
detect start points (pen-down events), end points (pen-
up events), branch points and edges of the handwriting.
A more complex and reliable thinning algorithm called
“Voronoi Skeletonisation” [14] appears largely invariant
with respect to typical noise conditions in the image
and geometric transformations. This paper will provide
an insight at skeletonisation problems which usually
occur when applying the ordinary classical thinning
algorithm.

An illustrative example of the skeletonisation process
is shown in Figure 1. As depicted in the figure, letter
’h’ is written by hand and its stroke satisfies all four
assumptions. One can see that the stroke contains one
clear start point, one clear end point, one loop and
one double-traced line. Its skeletal image is the 1-pixel-
width graph of the image itself. The skeletal double-
traced line now has the same width with the single-
traced line although in the original image, the double-
traced line is easier to be recognized. The problem of
detecting special aspects of the skeleton and construct-
ing the global trajectory will be discussed in a later
section of this paper.

Achieving the skeleton should ease up the detection
of start point, end point, branch points and edges of
the handwriting. To be more precise, the following
definitions are used throughout this paper:
• Adjacent: 2 pixels are called ’adjacent’ to each other

if they are the 8-neighbor of each other.
• Terminal pixel, line pixel, or branch pixel: a pixel

which is adjacent to only one pixel, to exactly two
pixels, or to more than two pixels, respectively. A
terminal pixel may be a start pixel or an end pixel
of the trajectory, or may be an end pixel of any
double-traced line.

• Edge: a continuous cluster of adjacent line pixels

that construct a continuous line and connect two
intersections.

• Intersection: a cluster of adjacent branch pixels that
represent a specific intersection of two edges.

• Vertex: a vertex may be a terminal pixel or an
intersection.

• Degree (of a vertex): the number of edges starting
from a specific vertex. An intersection may have the
degree of 3 or 4, while a terminal has the degree
of 1.

• Loop: A set of vertices and edges that circles a
closed region of the handwriting.

The thinning process may result in several unex-
pected errors in the skeletal image [15]. Some specific
techniques are needed to be applied to the skeleton
to remove L-connection pixels (which are the pixels
with three 8-neighbors but are considered line pixels)
and spur pixels (which are the pixels with only one 8-
neighbor but are not terminal pixels). One should note
these errors would massively affect the result of the
trajectory recovery process which will be mentioned
later in this paper.

3 Skeletal Graph Model

This section presents the mathematical model of the
handwriting’s skeleton and provides the investigation
on handwriting’s loops.

3.1 Modeling the Handwriting’s Skeleton
In order to theorize the global trajectory recovery

scheme, we construct a model of the skeletal graph
of the handwriting based on the basis of Y. Kato and
M. Yasuhara [9]. We propose a new object identity
named loop and new theory about the relations between
objects in the skeleton. A skeleton is modeled by a
graph

G = (V, E, L), (1)

where V = {v1, v2, . . . , vm} is a set of of m vertices.
Each vertex is represented by a terminal pixel, or an
intersection. E = {e1, e2, . . . , en} represents a set of n
edges, and L = {l1, l2, . . . , lp} is a set of p loops. One
can easily see that vertices are the most basic objects
in the skeletal graph, which composes of edges and
loops. Therefore each individual vertex vk must have
the specific attributes, or characteristics, given by

vk = {(cx
k , cy

k), ρ(vk), θ(vk), (b1
k , b2

k , . . . , bρ(vk)
k )}, (2)

where (cx
k , cy

k) is the two-dimensional coordinate posi-
tions of the vertex vk. If vk is a terminal pixel then its
coordinate positions are the positions of the pixel itself.
In case vk is an intersection, its coordinate positions are
the average position of the individual pixels comprised
of the intersection. ρ(vk) is the degree of vk, and θ(vk) is
the number of times that the tracing algorithm meets
the vertex vk. θ(vk) is used in the trajectory recovery
algorithm as a variable which will be mentioned in
Section 4. At first, θ(vk) is equal to 0. During the
process of trajectory tracing, θ(vk) is increased by one
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Figure 2. The adjacency relations of skeletal objects

each time whenever it is met by the tracing algorithm,
while ρ(vk) is kept the same as its initial value. Finally,
(b1

k , b2
k , . . . , bρ(vk)

k ) is a set of ρ(vk) numbered branches
starting from vertex vk. Each edge ek is composed of
two unordered branches bp

i and bq
j which are belong to

vertices vi and vj, respectively

ek = {bp
i , bq

j }. (3)

With the definitions mentioned earlier in this section,
we notice that vertex vi is adjacent to vertex vj (if i 6= j)
(and vice-versa), as denoted by

α(vi) = vj or α(vj) = vi. (4)

In other words, branch bp
i is adjacent to branch bq

j , and
they share a common edge ek as denoted by

bp
i

ek−→ bq
j or bq

j
ek−→ bp

i . (5)

The above adjacency relation between labeled edges
and vertices is depicted in Figure 2.

Regarding the loop’s definition in the previous parts
of this section, a loop lk is represented by a edges ek1,. . . ,
eka and b vertices vk1, . . . , vkb, which results in

lk = {ek1 , . . . , eka , vk1 , . . . , vkb
} (6)

where (a, b) ∈ {(1, 1), (2, 2)}. Equation (6) demon-
strates that some edges and vertices may be sub-
components of a loop. These edges and vertices are
needed to be excluded from the skeletal graph as they
are already presented in a loop. Figure 3 demonstrates
all the objects’ definitions mentioned in this section.
From this figure, we can summarize the personal data
collected after the process of skeletal graph model
construction:

e1 = {b1
1, b1

4}
e3 = {v3

5, b2
4}

e4 = {v1
2, v1

5}
e5 = {v1

3, v2
5}

l1 = {e2, v4}





Skeletal graph of Figure 3

3.2 Loop Investigation

Because of different human’s natural writing styles,
loops in handwritten scripts can be generated in differ-
ent ways. Using a general trajectory tracing algorithm
for all loop types without taking the categorization
of loops into consideration may negatively affect the
recovery results. This section provides a basic approach
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3.2 Loop Investigation

Because of different human’s natural writing styles,
loops in handwritten scripts can be generated in differ-
ent ways. Using a general trajectory tracing algorithm
for all loop types without taking the categorization

(a) The skeleton of the handwritten letter
’h’ presented by black thin lines. Two gray
rectangles labeled v4 and v5 indicate two
intersections in this skeleton, as shown in
details in Figure 3(b). Three gray circles
labeled v1, v2 and v3 indicate three termi-
nal pixels, as shown in Figure 3(c). Loop
l1 = {e2, v4} is treated as a separate object
and its composing components e2, v4 are
removed from the skeletal graph model.

(b) Two intersections named v4 and v5 as
indicated in Figure 3(a). An intersection is
marked by a group of adjacency branch
pixels with symbol × and each branch is
labeled from b1

4 to b4
4 for vertex v4 and b1

5
to b3

5 for vertex v5.

(c) Three terminal pixels as indicated in
Figure 3(a). A terminal pixel is marked by
symbol ∗ and its only branch is labeled.

Figure 3. Typical examples of different objects in the skeletal graph
of a handwriting letter ’h’.

of loops into consideration may negatively affect the
recovery results. This section provides a basic approach
to categorize loops into different types when each loop
type has some common characteristics. A loop’s pixel
may be part of an edge or a vertex of that loop.
Different number of composing vertices and adjacent
edges results in different types of loops as shown in
Table II.

The reason why we define a loop as a separate
skeletal object besides edges and vertices is that we
aim at recovering the local trajectory of a loop, which
has two end points like an edge, before tracing the
global trajectory. In this manner, one can treat a loop as
an edge which has the chain of adjacent pixels which
create the edge’s trajectory. There should be noticed
that some loop’s pixels may be traced more than once to

(a) The skeleton of the handwritten letter ’h’ presented by black thin
lines. Two gray rectangles labeled v4 and v5 indicate two intersections
in this skeleton, as shown in details in Figure 3(b). Three gray circles
labeled v1, v2 and v3 indicate three terminal pixels, as shown in
Figure 3(c). Loop l1 = {e2, v4} is treated as a separate object and its
composing components e2, v4 are removed from the skeletal graph
model.
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has two end points like an edge, before tracing the
global trajectory. In this manner, one can treat a loop as
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(b) Two intersections named v4 and v5 as indicated in Figure 3(a). An
intersection is marked by a group of adjacency branch pixels with
symbol × and each branch is labeled from b1
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The reason why we define a loop as a separate
skeletal object besides edges and vertices is that we
aim at recovering the local trajectory of a loop, which
has two end points like an edge, before tracing the
global trajectory. In this manner, one can treat a loop as
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that some loop’s pixels may be traced more than once to

(c) Three terminal pixels as indicated in Figure 3(a). A terminal pixel
is marked by symbol ∗ and its only branch is labeled.

Figure 3. Typical examples of different objects in the skeletal graph
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to categorize loops into different types when each loop
type has some common characteristics. A loop’s pixel
may be part of an edge or a vertex of that loop.
Different number of composing vertices and adjacent
edges results in different types of loops as shown in
Table II.

The reason why we define a loop as a separate
skeletal object besides edges and vertices is that we
aim at recovering the local trajectory of a loop, which
has two end points like an edge, before tracing the
global trajectory. In this manner, one can treat a loop as
an edge which has the chain of adjacent pixels which
create the edge’s trajectory. There should be noticed
that some loop’s pixels may be traced more than once to
construct its local trajectory, but a whole loop treated
as one handwritten object is only traced once during
the global trajectory construction phase. This is clearly
different to an edge that can be traced more than once
during the global trajectory construction phase, but the
pixels of an edge are traced only once to build its local
trajectory.
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Table II
Summary of Handwriting’s Loop Types

Loop
type

Number
of ver-
tices

Number
of adjacent
edges

Examples

1 1 2

2 2 2

As shown in Table II, loops can be classified into
two types based on the number of vertices and ad-
jacent edges. Loop type 1 has one vertex and two
edges starting from that vertex. This type of loop is
most usually generated by starting at one edge, going
through the loop and end at the other edge, like the
left example image. However in some special cases like
the right example image, the loop type 1 can be traced
at the vertex and then through the loop pixels first,
then continue to go out and then go in at one edge
(this edge is double-traced) and finally go out at the
other edge. This sub-type of loop type 1 mostly presents
in handwriting letter ’d’. Loop type 2 consists of two
different vertices and, therefore, it has two adjacent
edges, each starts from one vertex. As shown in the
example images, the loop itself has an edge which
connects two vertices. This edge is excluded from the
global skeletal graph because it already presents in
the loop. One should be noted that this section only
generally describes each type. Section 4 will deeply
analyze each type and provide a scheme to recover the
local trajectory of each loop type.

4 Trajectory Tracing Scheme

This section presents the global stroke tracing scheme,
including the start vertex detection, the global tracing
algorithm and the local loop tracing algorithm. Figure 4
shows the sequence of steps of our approach. First, the
static image is preprocessed to remove noisy artifacts
before being skeletonised to extract its skeletal image.
Some techniques to detect the edges, vertices and loops
help to construct the skeletal graph model of the hand-
writing, based on the analysis on each individual pixel
and its neighboring relation of the image [15]. Next, the
start vertex of the written stroke must be identified. If
the handwriting has any loop, the next process is to find
the loops’ stroke. Finally, an algorithm is proposed to
construct the global stroke of the handwritten image.

5

TABLE II: Summary of handwriting’s loop types

Loop
type

Number
of ver-
tices

Number
of ad-
jacent
edges

Examples

1 1 2

2 2 2

the handwriting has any loop, the next process is to find the
loops’ stroke. Finally, an algorithm is proposed to construct
the global stroke of the handwritten image.

Start Preprocess and
Skeletonisation

Vertices, edges
and loops detection

Skeletal Graph
Construction

Detect global
start vertex

Local loop
tracing

Global trajectory
recovery

Global
trajectory

Fig. 4: Diagram chart of our method to recover the handwrit-
ing’s stroke.

A. Start vertex detection

One important task that importantly affects the recovery
result is to detect the start vertex of the handwriting. Y. Kato
and M. Yasuhara’s work [9] assumes that the handwriting must
have the distinct start and end vertex. This section presents a
scheme to detect the start point of the handwriting’s stroke,
including the ones with multiple strokes. We assume that
people usually start to writing at the top-left region of the
paper. Then the start vertex should be the vertex with degree
1 that appears in the top-left region of the image. In multi-
stroke handwritten images, once the tracing algorithm reaches
the end vertex of the first stroke, the start vertex operation is
performed again by the same way to detect the start vertex of
the next stroke, by estimating the remain untraced degree-1
vertices.

B. Global trajectory tracing

Let v denote the current processing vertex of the tracing
algorithm and v′ is the next vertex after selecting the correct
path at the current vertex v. Let bin and bout be the input and
output branch of the current vertex, respectively. Our tracing

algorithm selects the output branch bout after the analysis
process at the current vertex v and its input branch bin, as
denoted by

bin ⇒ bout. (7)

The output branch bout of the current vertex shares a common
edge to a new input branch of the next vertex v′, denoted by
b′in. Combining Equation (5) and (7) yields

bin ⇒ bout
edge−−−→ b′in. (8)

Equation (8) is used when v is not part of a loop. If v is
a member of a loop, then the local trajectory of the loop is
extracted before the algorithm reaches the output branch bout

bin → local loop trajectory→ bout
edge−−−→ b′in. (9)

The following principles are used to design the tracing
algorithm flow chart shown in Fig. 5.

Fig. 5: The handwriting’s trajectory tracing algorithm.

1) Principle 1: The tracing algorithm ends when the next
vertex v′ is the last vertex which is met by the tracing
algorithm.

2) Principle 2: The tracing of a single stroke ends if one
of the three following conditions occurs: if an edge has been
crossed 3 times or a vertex degree 3 has been met 3 times or a
loop has been met twice. If one of these conditions occurs, the
algorithm will detect the start vertex of the next stroke (search
for the start vertex of all the vertices that have not been met
before) and, then, continue to trace the stroke normally until
Principle 1 is met.

Figure 4. Diagram chart of our method to recover the handwriting’s
stroke.

4.1 Start Vertex Detection

One important task that importantly affects the re-
covery result is to detect the start vertex of the hand-
writing. Y. Kato and M. Yasuhara’s work [9] assumes
that the handwriting must have the distinct start and
end vertex. This section presents a scheme to detect
the start point of the handwriting’s stroke, including
the ones with multiple strokes. We assume that people
usually start to writing at the top-left region of the
paper. Then the start vertex should be the vertex with
degree 1 that appears in the top-left region of the image.
In multi-stroke handwritten images, once the tracing
algorithm reaches the end vertex of the first stroke, the
start vertex operation is performed again by the same
way to detect the start vertex of the next stroke, by
estimating the remain untraced degree-1 vertices.

4.2 Global Trajectory Tracing

Let v denote the current processing vertex of the trac-
ing algorithm and v′ is the next vertex after selecting
the correct path at the current vertex v. Let bin and bout
be the input and output branch of the current vertex,
respectively. Our tracing algorithm selects the output
branch bout after the analysis process at the current
vertex v and its input branch bin, as denoted by

bin ⇒ bout. (7)

The output branch bout of the current vertex shares a
common edge to a new input branch of the next vertex
v′, denoted by b′in. Combining Equation (5) and (7)
yields

bin ⇒ bout
edge−−→ b′in. (8)

Equation (8) is used when v is not part of a loop. If
v is a member of a loop, then the local trajectory of
the loop is extracted before the algorithm reaches the
output branch bout

bin → local loop trajectory→ bout
edge−−→ b′in. (9)

The following principles are used to design the trac-
ing algorithm flow chart shown in Figure 5.

4.2.1 Principle 1: The tracing algorithm ends when
the next vertex v′ is the last vertex which is met by the
tracing algorithm.
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Figure 5. The handwriting’s trajectory tracing algorithm.

4.2.2 Principle 2: The tracing of a single stroke ends if
one of the three following conditions occurs: if an edge
has been crossed 3 times or a vertex degree 3 has been
met 3 times or a loop has been met twice. If one of these
conditions occurs, the algorithm will detect the start
vertex of the next stroke (search for the start vertex of
all the vertices that have not been met before) and, then,
continue to trace the stroke normally until Principle 1
is met.

4.2.3 Principle 3: If the current vertex v has the degree
of 1, the output branch bout is the same as the input
branch bin, as it is the only branch of the vertex.

if ρ(v) = 1 then bout = bin.

4.2.4 Principle 4: If the current vertex has the degree
of 3 and it has not been met before, the smoothest
output branch is selected by the tracing algorithm

if ρ(v) = 3 and θ(v) = 1 then bout = bsmooth
in

where bsmooth
in is the smoothest output branch of the

input branch bin. Figure 6 illustrates a typical example
of the smoothest branch choosing. In Figure 6(a), the
scheme of detecting the smoothest output branch is
represented. φ1 and φ2 are the angles of the input
branch bin with two output branches bout_1 and bout_2.
The smoother output branch will have the angle closer
to π, or 180o. Figure 6(b) shows the example of labelling
each output branch after the choosing process.

4.2.5 Principle 5: If the current vertex has degree of
3 and it has been met once, the remaining untraced
branch is selected by the tracing algorithm

if ρ(v) = 3 and θ(v) = 2 then bout = buntraced
in

(a) The process of
smoothest branch
analysis.

(b) Smoothest branch
labelling.

Figure 6. Smoothest branch analysis process.

where buntraced
in is the only remaining untraced output

branch of the input branch bin. Figure 6(b) shows the la-
bels of the output branches relative to the input branch.
Specifically, in any vertex of degree 3, once an output
branch is selected between two output candidates as
a smoothest branch in the first meeting of the vertex,
the remaining branch will automatically be the only
untraced branch when the tracing algorithm reaches
this vertex for the second time.

4.2.6 Principle 6: If the current vertex has the degree
of 4, the smoothest output branch is selected by the
tracing algorithm

if ρ(v) = 4 then bout = bsmooth
in

where bsmooth
in is the smoothest output branch of the

input branch bin.
4.2.7 Principle 7: If the current vertex is a member of

a loop, the local trajectory of that loop is obtained and
the output branch depends on the local trajectory of the
loop.

One typical example of the trajectory tracing algo-
rithm of handwritten letter ’h’ in Figure 3 is briefly
summarized in Table III. When the algorithm stops, we
obtain the final global trajectory by concatenating the
constituent trajectories of each step: Start→ b1

1
e1−→ b1

4 →
b3

4
e2−→ b4

4 → b2
4

e3−→ b3
5 → b1

5
e4−→ b1

2 → b1
2

e4−→ b1
5 → b2

5
e5−→

b1
3 → End.

4.3 Local Loop Tracing
4.3.1 Loop type 1: This type of loop has 1 vertex

and 2 adjacent edges, then one of these 2 edges is the
input branch. Such a loop is written before reaching
the output branch, which is the other vertex. This loop
type is the most common generated one by the natural
behavior of human. By this explanation, either of the
two adjacent vertices is the input branch or the output
branch, depending on the handwriting.

4.3.2 Loop type 2: Loop type 2 is one of the spe-
cial cases of loops that have different ways of stroke-
generation. Some examples of loop type 2 are shown
in Table II. In this paper, we assume that human’s
behavior chooses the smoothest branch when the stroke
meets any 3-degree-branch. The loop type 2 can be
traced by complying these following steps:
• Step 1: Choose the smoothest output branch at the

processing vertex (this vertex is part of the loop).
• Step 2: Follow the loop until it reaches the other

vertex of the loop.
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Table III
A Typical Example of the Trajectory Tracing Algorithm Steps of Handwritten Letter ’h’.

Current
vertex

v

Degree
ρ(v)

Input
branch

bin

Comments Output
branch

bout

Next
vertex

v′

Meet times
of next
vertex
θ(v′)

Next
input
branch
b′in

Trajectory =

bin → bout
edge−−→ b′in

v1 1 Start vertex of degree 1. Choose the
only branch (Principle 3)

b1
1 v4 0→ 1 b1

4 Start → b1
1

e1−→ b1
4

v4 loop b1
4 v4 belongs to a loop with input

branch b1
4 . Follow the local loop’s

trajectory before going to the output
branch b2

4 (Principle 7)

b2
4 v5 0→ 1 b3

5 b1
4 → b3

4
e2−→ b4

4 → b2
4

e3−→ b3
5

v5 3 b3
5 Vertex v5 (degree 3) has not been

met before, so choose the smoothest
output branch b1

5 relative to its input
branch b3

5 (Principle 4)

b1
5 v2 0→ 1 b1

2 b3
5 → b1

5
e4−→ b1

2

v2 1 b1
2 ρ(v2) = 1 so choose the only branch

(Principle 3)
b1

2 v5 1→ 2 b1
5 b1

2 → b1
2

e4−→ b1
5

v5 3 b1
5 Vertex v5 (degree 3) has been met

once before, so choose the remaining
uncrossed branch b2

5 (Principle 5)

b2
5 v3 0→ 1 b1

3 b1
5 → b2

5
e5−→ b1

3

v3 1 b1
3 Algorithm stops because vertex v3 is

the last processed vertex of the skele-
ton (Principle 1)

→ End

Figure 7. The tracing steps of loop type 2.

• Step 3: Trace the loop’s circle in the higher direction
until all the pixels of the circle are met.

• Step 4: Find the shortest edge that leads to the
output branch.

The tracing steps of loop type 2 are depicted in Figure 7.
The loop circle has the gray color and two adjacent
branches are black, which are labeled bin and bout
corresponding to the input branch and output branch,
respectively. Two vertices of the loop are marked by
two thin black circles. The dashed arrow represents the
trajectory and the numbers on the arrows indicate the
step number of the tracing algorithm.

5 Experiment and Discussion

To test the tracing algorithm performance, we conduct
the experiment on four sets of handwritings. The first
and the second sets are respectively composed of 100
single-stroke and 100 multi-stroke English character
images created from the Unipen database [16]. This
database contains a huge number of online samples
with different styles like digits, upper/lower case let-
ters, symbols, printed words and texts. These samples
have the sequence of pen-tip coordinates. To retrieve the
static images from this online database, we assume that
the stroke width is 3 pixels. The noisy artifacts are re-
moved from the extracted scripts. For a more thorough
analysis on the complicated handwritings rather than
English characters, we also collect handwritings from

Table IV
Experimental Results of Our Approach

Set Settings Accuracy
1 UNIPEN corpus, 100 single-stroke characters 96.0%
2 UNIPEN corpus, 100 multi-stroke characters 94.0%
3 100 single-stroke general handwritings 95.0%
4 100 multi-stroke general handwritings 74.0%

Table V
Experimental Results of Previous Methods

Author Settings Accuracy
Abuhaiba et al. [17] 2 writers, 65 strokes, 159

blobs
83.6%

Allen and Navarro [18] 1248 characters by 12 writ-
ers

91.6%

Plamondon et al. [8] 200 city names 89.0%
Lallican et al. [19] 260 characters by 10 writers 90.0%
Kato and Yasuhara [9] 100 single-stroke handwrit-

ings
91.6%

Doermann et al. [12] 1270 words by 5 writers 84.0%
Rousseau et al. [20] 5800 single-stroke charac-

ters
87.0%

Qiao and
Yasuhara [21]

UNIPEN corpus, words
contain vertices with degree
3 or degree 4 only

93.7%

Qiao et al. [5] UNIPEN corpus, 708,881
static images & 187 single-
stroke images

96.0%

different sources for the third and the fourth set. They
are 100 single and multi-stroke, respectively, handwrit-
ings including English words, human signatures and
artificial shapes. The recovery accuracy of these four
sets is shown in Table IV. As a result, 96 samples
from the first set and 94 samples from the second set
are successfully recovered, which result in the accuracy
of 96.0% and 94.0%, respectively, for the experimental
subjects of English characters. In comparison with oth-
ers’ results shown in Table V, it can be noted that our
method has the promising outcome for the recovery of
English characters, compared to the methods of Allen
and Navarro [18], Lallican et al. [19], Rousseau et al. [20],
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Figure 8. The successfully recovered handwritings.

which have the average accuracy of 91.6%, 90.0% and
87.0% respectively.

We also make some comparisons with others’ ap-
proaches which deal with general handwritings, in-
cluding the methods of Abuhaiba et al. [17] (83.6%),
Plamondon et al. [8] (89.0%), Kato and Yasuhara [9]
(91.6%), Doermann et al. [12] (84.0%), Qiao et al. [21]
[5] (93.7%, 96.0%). We obtain the accuracy of 95.0%
for single-stroke general handwritings from set 3. Our
result shows that the accuracy of our method is higher
than that of the other approaches for single-stroke
handwritings. Finally, for a general multi-stroke scripts,
we also achieve the accuracy of 74.0%, approximate
to three quarters of general scripts. There are specific
technical reasons to explain the degradation of accuracy
when working with multi-stroke scripts. We collect
multi-stroke scripts from different sources to build the
fourth experimental set, including some complicated
multi-stroke handwritings which are hard to recover its
correct trajectory. Most of the errors occur in the phase
of detecting the start point of each sub-stroke, mainly
because the sub-strokes are overlapped and the tracing
algorithm cannot detect the start point of each sub-
stroke. Some other mismatch cases are the wrong de-
tection of stroke order, or wrong tracing direction due
to smoothest output branch misidentification on the
intersection. Several mis-detected samples are shown
and explained in Figure 9.

The experimental results show that our approach
can recover the stroke of static handwritings, including
single-stroke and multi-stroke scripts. Based on the idea
of loop investigation, our proposed method is capable
of recovering complicated strokes which include loops
and intersections. The tracing algorithm is mostly based

on human natural writing behavior. The scripts must
satisfy the pre-defined assumptions to be recovered.
When a loop is being processed to extract its local
trajectory, its vertices and adjacent edges are used for
the analysis process. The missing detected strokes are
most due to the loop’s circle smoothness, which are
not specific skeletal characteristics presented in this
paper. Then loop’s smoothness analysis must be taken
into consideration when performing the task of tracing
the loop’s circle. One other proposal that should be
highlighted in future studies is the categorization and
recovery of local loops. There should be noted that this
paper does not cover all the possibilities of generated
loops. Different number of vertices, edges and adjacent
edges of a loop, and even overlapped loops can be
analyzed for better performance.

6 Conclusion

This paper has presented a method to recover the
handwritten stroke of static handwriting images based
on the novel approach on loop analysis. The recovery
capability is based on skeletal objects (edges, vertices
and loops) and can be applied to single-stroke as well as
multi-stroke handwritings. The tracing algorithm only
ends if all the vertices of the handwriting’s skeleton are
traced. This method therefore can detect all the pen-
down and pen-up events, corresponding to the single
strokes which construct the multi-stroke image. Loop
analysis is performed before the global stroke construc-
tion phase as a separate process. This lays a foundation
for a new model of handwriting’s skeleton, which
treats a loop as an individual object rather than the
combination of vertices and edges. Evaluating all the
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handwritings which are hard to recover its correct trajectory.
Most of the errors occur in the phase of detecting the start
point of each sub-stroke, mainly because the sub-strokes
are overlapped and the tracing algorithm cannot detect the
start point of each sub-stroke. Some other mismatch cases
are the wrong detection of stroke order, or wrong tracing
direction due to smoothest output branch misidentification on
the intersection. Several mis-detected samples are shown and
explained in Fig. 9.

(a) Multi-stroke Japanese handwritings which
have unclear sub-stroke start points.

(b) A 4-degree intersection of two different
sub-stroke, as indicated by the thin arrow. The
smoothest output branch is misidentified.

(c) Misdetected start point and endpoint of a
sub-stroke as indicated by the thin arrows.

(d) Misdetected start point of a sub-stroke as
indicated by the thin arrow

Fig. 9: Unsuccessful recovered trajectory handwritten samples

TABLE IV: Experimental results of our approach.

Set Settings Accuracy
1 UNIPEN corpus, 100 single-stroke characters 96.0%
2 UNIPEN corpus, 100 multi-stroke characters 94.0%
3 100 single-stroke general handwritings 95.0%
4 100 multi-stroke general handwritings 74.0%

TABLE V: Experimental results of previous methods.

Author Settings Accuracy
Abuhaiba et al. [20] 2 writers, 65 strokes, 159 blobs 83.6%
Allen and Navarro
[17] 1248 characters by 12 writers 91.6%

Plamondon et al. [8] 200 city names 89.0%
Lallican et al. [18] 260 characters by 10 writers 90.0%
Kato and Yasuhara [9] 100 single-stroke handwritings 91.6%
Doermann et al. [12] 1270 words by 5 writers 84.0%
Rousseau et al. [19] 5800 single-stroke characters 87.0%

Qiao and Yasuhara
[21]

UNIPEN corpus, words contain
vertices with degree 3 or degree 4
only

93.7%

Qiao et al. [5] UNIPEN corpus, 708,881 static
images & 187 single-stroke images 96.0%

The experimental results show that our approach can recover
the stroke of static handwritings, including single-stroke and
multi-stroke scripts. Based on the idea of loop investigation,
our proposed method is capable of recovering complicated
strokes which include loops and intersections. The tracing
algorithm is mostly based on human natural writing behavior.
The scripts must satisfy the pre-defined assumptions to be
recovered. When a loop is being processed to extract its local
trajectory, its vertices and adjacent edges are used for the
analysis process. The missing detected strokes are most due
to the loop’s circle smoothness, which are not specific skeletal
characteristics presented in this paper. Then loop’s smoothness
analysis must be taken into consideration when performing
the task of tracing the loop’s circle. One other proposal that
should be highlighted in future studies is the categorization
and recovery of local loops. There should be noted that this
paper does not cover all the possibilities of generated loops.
Different number of vertices, edges and adjacent edges of a
loop, and even overlapped loops can be analyzed for better
performance.

VI. CONCLUSION

This paper has presented a method to recover the handwrit-
ten stroke of static handwriting images based on the novel
approach on loop analysis. The recovery capability is based
on skeletal objects (edges, vertices and loops) and can be
applied to single-stroke as well as multi-stroke handwritings.
The tracing algorithm only ends if all the vertices of the hand-
writing’s skeleton are traced. This method therefore can detect
all the pen-down and pen-up events, corresponding to the
single strokes which construct the multi-stroke image. Loop
analysis is performed before the global stroke construction
phase as a separate process. This lays a foundation for a new
model of handwriting’s skeleton, which treats a loop as an
individual object rather than the combination of vertices and
edges. Evaluating all the combination possibilities of loops
can help to improve the recovery performance significantly.
Further study will focus on the heuristic rules of written loop,
which varies in different languages. A more intricate analysis
on loops, especially on overlapped loops should be noticed in
our work in future.

(a) Multi-stroke Japanese handwritings which have unclear
sub-stroke start points.
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handwritings which are hard to recover its correct trajectory.
Most of the errors occur in the phase of detecting the start
point of each sub-stroke, mainly because the sub-strokes
are overlapped and the tracing algorithm cannot detect the
start point of each sub-stroke. Some other mismatch cases
are the wrong detection of stroke order, or wrong tracing
direction due to smoothest output branch misidentification on
the intersection. Several mis-detected samples are shown and
explained in Fig. 9.

(a) Multi-stroke Japanese handwritings which
have unclear sub-stroke start points.

(b) A 4-degree intersection of two different
sub-stroke, as indicated by the thin arrow. The
smoothest output branch is misidentified.

(c) Misdetected start point and endpoint of a
sub-stroke as indicated by the thin arrows.

(d) Misdetected start point of a sub-stroke as
indicated by the thin arrow

Fig. 9: Unsuccessful recovered trajectory handwritten samples

TABLE IV: Experimental results of our approach.

Set Settings Accuracy
1 UNIPEN corpus, 100 single-stroke characters 96.0%
2 UNIPEN corpus, 100 multi-stroke characters 94.0%
3 100 single-stroke general handwritings 95.0%
4 100 multi-stroke general handwritings 74.0%

TABLE V: Experimental results of previous methods.

Author Settings Accuracy
Abuhaiba et al. [20] 2 writers, 65 strokes, 159 blobs 83.6%
Allen and Navarro
[17] 1248 characters by 12 writers 91.6%

Plamondon et al. [8] 200 city names 89.0%
Lallican et al. [18] 260 characters by 10 writers 90.0%
Kato and Yasuhara [9] 100 single-stroke handwritings 91.6%
Doermann et al. [12] 1270 words by 5 writers 84.0%
Rousseau et al. [19] 5800 single-stroke characters 87.0%

Qiao and Yasuhara
[21]

UNIPEN corpus, words contain
vertices with degree 3 or degree 4
only

93.7%

Qiao et al. [5] UNIPEN corpus, 708,881 static
images & 187 single-stroke images 96.0%

The experimental results show that our approach can recover
the stroke of static handwritings, including single-stroke and
multi-stroke scripts. Based on the idea of loop investigation,
our proposed method is capable of recovering complicated
strokes which include loops and intersections. The tracing
algorithm is mostly based on human natural writing behavior.
The scripts must satisfy the pre-defined assumptions to be
recovered. When a loop is being processed to extract its local
trajectory, its vertices and adjacent edges are used for the
analysis process. The missing detected strokes are most due
to the loop’s circle smoothness, which are not specific skeletal
characteristics presented in this paper. Then loop’s smoothness
analysis must be taken into consideration when performing
the task of tracing the loop’s circle. One other proposal that
should be highlighted in future studies is the categorization
and recovery of local loops. There should be noted that this
paper does not cover all the possibilities of generated loops.
Different number of vertices, edges and adjacent edges of a
loop, and even overlapped loops can be analyzed for better
performance.

VI. CONCLUSION

This paper has presented a method to recover the handwrit-
ten stroke of static handwriting images based on the novel
approach on loop analysis. The recovery capability is based
on skeletal objects (edges, vertices and loops) and can be
applied to single-stroke as well as multi-stroke handwritings.
The tracing algorithm only ends if all the vertices of the hand-
writing’s skeleton are traced. This method therefore can detect
all the pen-down and pen-up events, corresponding to the
single strokes which construct the multi-stroke image. Loop
analysis is performed before the global stroke construction
phase as a separate process. This lays a foundation for a new
model of handwriting’s skeleton, which treats a loop as an
individual object rather than the combination of vertices and
edges. Evaluating all the combination possibilities of loops
can help to improve the recovery performance significantly.
Further study will focus on the heuristic rules of written loop,
which varies in different languages. A more intricate analysis
on loops, especially on overlapped loops should be noticed in
our work in future.

(b) A 4-degree intersection of two different sub-stroke, as
indicated by the thin arrow. The smoothest output branch is
misidentified.
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handwritings which are hard to recover its correct trajectory.
Most of the errors occur in the phase of detecting the start
point of each sub-stroke, mainly because the sub-strokes
are overlapped and the tracing algorithm cannot detect the
start point of each sub-stroke. Some other mismatch cases
are the wrong detection of stroke order, or wrong tracing
direction due to smoothest output branch misidentification on
the intersection. Several mis-detected samples are shown and
explained in Fig. 9.
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sub-stroke, as indicated by the thin arrow. The
smoothest output branch is misidentified.

(c) Misdetected start point and endpoint of a
sub-stroke as indicated by the thin arrows.

(d) Misdetected start point of a sub-stroke as
indicated by the thin arrow

Fig. 9: Unsuccessful recovered trajectory handwritten samples

TABLE IV: Experimental results of our approach.

Set Settings Accuracy
1 UNIPEN corpus, 100 single-stroke characters 96.0%
2 UNIPEN corpus, 100 multi-stroke characters 94.0%
3 100 single-stroke general handwritings 95.0%
4 100 multi-stroke general handwritings 74.0%

TABLE V: Experimental results of previous methods.

Author Settings Accuracy
Abuhaiba et al. [20] 2 writers, 65 strokes, 159 blobs 83.6%
Allen and Navarro
[17] 1248 characters by 12 writers 91.6%

Plamondon et al. [8] 200 city names 89.0%
Lallican et al. [18] 260 characters by 10 writers 90.0%
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UNIPEN corpus, words contain
vertices with degree 3 or degree 4
only

93.7%

Qiao et al. [5] UNIPEN corpus, 708,881 static
images & 187 single-stroke images 96.0%

The experimental results show that our approach can recover
the stroke of static handwritings, including single-stroke and
multi-stroke scripts. Based on the idea of loop investigation,
our proposed method is capable of recovering complicated
strokes which include loops and intersections. The tracing
algorithm is mostly based on human natural writing behavior.
The scripts must satisfy the pre-defined assumptions to be
recovered. When a loop is being processed to extract its local
trajectory, its vertices and adjacent edges are used for the
analysis process. The missing detected strokes are most due
to the loop’s circle smoothness, which are not specific skeletal
characteristics presented in this paper. Then loop’s smoothness
analysis must be taken into consideration when performing
the task of tracing the loop’s circle. One other proposal that
should be highlighted in future studies is the categorization
and recovery of local loops. There should be noted that this
paper does not cover all the possibilities of generated loops.
Different number of vertices, edges and adjacent edges of a
loop, and even overlapped loops can be analyzed for better
performance.

VI. CONCLUSION

This paper has presented a method to recover the handwrit-
ten stroke of static handwriting images based on the novel
approach on loop analysis. The recovery capability is based
on skeletal objects (edges, vertices and loops) and can be
applied to single-stroke as well as multi-stroke handwritings.
The tracing algorithm only ends if all the vertices of the hand-
writing’s skeleton are traced. This method therefore can detect
all the pen-down and pen-up events, corresponding to the
single strokes which construct the multi-stroke image. Loop
analysis is performed before the global stroke construction
phase as a separate process. This lays a foundation for a new
model of handwriting’s skeleton, which treats a loop as an
individual object rather than the combination of vertices and
edges. Evaluating all the combination possibilities of loops
can help to improve the recovery performance significantly.
Further study will focus on the heuristic rules of written loop,
which varies in different languages. A more intricate analysis
on loops, especially on overlapped loops should be noticed in
our work in future.

(c) Misdetected start point and endpoint of a sub-stroke as
indicated by the thin arrows.
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handwritings which are hard to recover its correct trajectory.
Most of the errors occur in the phase of detecting the start
point of each sub-stroke, mainly because the sub-strokes
are overlapped and the tracing algorithm cannot detect the
start point of each sub-stroke. Some other mismatch cases
are the wrong detection of stroke order, or wrong tracing
direction due to smoothest output branch misidentification on
the intersection. Several mis-detected samples are shown and
explained in Fig. 9.

(a) Multi-stroke Japanese handwritings which
have unclear sub-stroke start points.

(b) A 4-degree intersection of two different
sub-stroke, as indicated by the thin arrow. The
smoothest output branch is misidentified.

(c) Misdetected start point and endpoint of a
sub-stroke as indicated by the thin arrows.

(d) Misdetected start point of a sub-stroke as
indicated by the thin arrow

Fig. 9: Unsuccessful recovered trajectory handwritten samples

TABLE IV: Experimental results of our approach.

Set Settings Accuracy
1 UNIPEN corpus, 100 single-stroke characters 96.0%
2 UNIPEN corpus, 100 multi-stroke characters 94.0%
3 100 single-stroke general handwritings 95.0%
4 100 multi-stroke general handwritings 74.0%

TABLE V: Experimental results of previous methods.

Author Settings Accuracy
Abuhaiba et al. [20] 2 writers, 65 strokes, 159 blobs 83.6%
Allen and Navarro
[17] 1248 characters by 12 writers 91.6%

Plamondon et al. [8] 200 city names 89.0%
Lallican et al. [18] 260 characters by 10 writers 90.0%
Kato and Yasuhara [9] 100 single-stroke handwritings 91.6%
Doermann et al. [12] 1270 words by 5 writers 84.0%
Rousseau et al. [19] 5800 single-stroke characters 87.0%

Qiao and Yasuhara
[21]

UNIPEN corpus, words contain
vertices with degree 3 or degree 4
only

93.7%

Qiao et al. [5] UNIPEN corpus, 708,881 static
images & 187 single-stroke images 96.0%

The experimental results show that our approach can recover
the stroke of static handwritings, including single-stroke and
multi-stroke scripts. Based on the idea of loop investigation,
our proposed method is capable of recovering complicated
strokes which include loops and intersections. The tracing
algorithm is mostly based on human natural writing behavior.
The scripts must satisfy the pre-defined assumptions to be
recovered. When a loop is being processed to extract its local
trajectory, its vertices and adjacent edges are used for the
analysis process. The missing detected strokes are most due
to the loop’s circle smoothness, which are not specific skeletal
characteristics presented in this paper. Then loop’s smoothness
analysis must be taken into consideration when performing
the task of tracing the loop’s circle. One other proposal that
should be highlighted in future studies is the categorization
and recovery of local loops. There should be noted that this
paper does not cover all the possibilities of generated loops.
Different number of vertices, edges and adjacent edges of a
loop, and even overlapped loops can be analyzed for better
performance.

VI. CONCLUSION

This paper has presented a method to recover the handwrit-
ten stroke of static handwriting images based on the novel
approach on loop analysis. The recovery capability is based
on skeletal objects (edges, vertices and loops) and can be
applied to single-stroke as well as multi-stroke handwritings.
The tracing algorithm only ends if all the vertices of the hand-
writing’s skeleton are traced. This method therefore can detect
all the pen-down and pen-up events, corresponding to the
single strokes which construct the multi-stroke image. Loop
analysis is performed before the global stroke construction
phase as a separate process. This lays a foundation for a new
model of handwriting’s skeleton, which treats a loop as an
individual object rather than the combination of vertices and
edges. Evaluating all the combination possibilities of loops
can help to improve the recovery performance significantly.
Further study will focus on the heuristic rules of written loop,
which varies in different languages. A more intricate analysis
on loops, especially on overlapped loops should be noticed in
our work in future.

(d) Misdetected start point of a sub-stroke as indicated by the
thin arrow

Figure 9. Unsuccessful recovered trajectory handwritten samples

combination possibilities of loops can help to improve
the recovery performance significantly. Further study
will focus on the heuristic rules of written loop, which
varies in different languages. A more intricate analysis
on loops, especially on overlapped loops should be
noticed in our work in future.
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