
REV Journal on Electronics and Communications, Vol. 5, No. 3–4, July–December, 2015 67

Regular Article

FPGA-Based Multiple DDoS Countermeasure Mechanisms
System Using Partial Dynamic Reconfiguration
Tran Ngoc Thinh, Cuong Pham-Quoc, Biet Nguyen-Hoang, Thuy-Chau Tran-Thi,
Chien Do-Minh, Quoc Nguyen-Bao, Nguyen Quoc Tuan

Ho Chi Minh City University of Technology, Vietnam National University, Ho Chi Minh city, Vietnam

Correspondence: Cuong Pham-Quoc, cuongpham@hcmut.edu.vn
Communication: received 17 December 2015, revised 15 March 2016, accepted 4 April 2016
Online publication: 10 October 2016, Digital Object Identifier: 10.21553/rev-jec.137
The guest editor coordinating the review of this article and recommending it for publication was Dr. Tran Manh Ha.

Abstract– In this paper, we propose a novel FPGA-based high-speed DDoS countermeasure system that can flexibly adapt to
DDoS attacks while still maintaining system performance. The system includes a packet decoder module and multiple DDoS
countermeasure mechanisms. We apply dynamic partial reconfiguration technique in this system so that the countermeasure
mechanisms can be flexibly changed or updated on-the-fly. The proposed system architecture separates DDoS protection
modules (which implement DDoS countermeasure techniques) from the packet decoder module. By using this approach, one
DDoS protection module can be reconfigured without interfering with other modules. The proposed system is implemented
on a NetFPGA 10G board. The synthesis results show that the system can work at up to 116.782 MHz while utilizing up
to 39.9% Registers and 49.85% BlockRAM of the Xilinx Virtex xcv5tx240t FPGA device on the NetFPGA 10G board. The
system achieves the detection rate of 100% with the false negative rate at 0% and false positive rate closed to 0.16%. The
prototype system achieves packet decoding throughput at 9.869 Gbps in half-duplex mode and 19.738 Gbps in full-duplex
mode.

Keywords– Partial Reconfiguration, ICAP, Reconfigurable hardware, Distributed Denial of Service (DDoS), Hop-count,
Ingress, Egress.

1 Introduction

Distributed Denial of Service (DDoS) is a network at-
tack method to prevent legitimate users from accessing
network resources or services. It consumes network
resources or server resources by employing multiple
computer zombies to simultaneously send requests to
a victim. The victim will be overloaded. It then cannot
respond to legitimate requests and causes denial of
service. Most of DDoS attacks use Internet Protocol (IP)
address spoofing technique [1] that allows attackers to
modify source IP address of a packet. Hence, its original
address is hidden. Spoofer Project has shown that 13.5%
of the overall address space is spoofable [2]. Network
router only checks packet destination address to make
a routing decision while keeping source address intact.
The way a router routes a packet is a vulnerability
that attackers can exploit to perform DDoS attacks.
There is much research on proposing DDoS counter-
ing systems in the literature [1]. However, most of
those proposed systems are implemented as software
programs. Therefore, they could not quickly react to
DDoS attacks in a high-speed network environment. To
eliminate the limitation of those systems, we need to
develop a platform that not only is programmable but
also has a high-performance.

In last decades, computer society has seen the evo-
lution of reconfigurable computing from less-complex
prototyping to high density and performance plat-

forms. Field Programmable Gate Array (FPGA) is usu-
ally used for implementing reconfigurable computing
systems. FPGAs are programmable logic devices that
consist of a matrix of Configurable Logic Blocks (CLBs)
connected through programmable interconnects that
can be re-programmed. FPGA not only has advantages
of hardware-based high-speed parallel processing but
also takes the flexibility of software-based programma-
bility. In this work, we take these main advantages of
FPGA devices into consideration to quickly adapt to
various DDoS attack mechanisms and achieves high-
speed computation. Dynamic partial reconfiguration
technique is applied to quickly react to the changes of
vulnerability exploitations.

An FPGA device is configured by loading
application-specific configuration data, named
bitstream, into internal configuration memory.
Partial reconfiguration (PR) is the modification
of an operating FPGA configuration memory by
loading a partial configuration file. With the rapid
development of technology, FPGAs allow dynamic
partial reconfiguration (DPR). It means that some
parts of an FPGA device can be reconfigured at
runtime while other parts are still working. This
runtime reconfiguration helps systems be updated
while still operating. The design flow of DPR partitions
configuration memory into static logic and reconfigurable
logic [3]. In DPR process, the static logic remains
functioning while the reconfigurable logic is modified
by the partial configuration file.

1859-378X–2015-3403 c© 2015 REV

68 REV Journal on Electronics and Communications, Vol. 5, No. 3–4, July–December, 2015

In this paper, we propose a novel FPGA-based high-
speed DDoS countermeasure system using reconfig-
urable computing platform with taking dynamic partial
reconfiguration technique into consideration. The sys-
tem consists of three main components: Base System,
DDoS Filtering, and Dynamic Partial Reconfiguration
(DPR). The Base System takes responsibility to extract
header and store raw packets while waiting for classi-
fying results from the DDoS Filtering component. The
DDoS Filtering component classifies packets based on
the header received from Base System. The DDoS Fil-
tering component can include multiple filtering mech-
anisms and can be updated or changed dynamically.
DPR consists of DPR Controller and Internal Configu-
ration Access Port (ICAP) Controller [4] that partially
reconfigures DDoS Filtering on-the-fly while the system
is still operating. DPR uses ICAP primitive to make
reconfiguration.

The main contributions of the paper are as follows:
• High-speed packet decoder: the packet decoder

module is implemented in an FPGA device. It takes
advantages of hardware-based parallel processing,
which is faster than software-based implementa-
tion. Experimental results show that the packet
decoder in our proposed system reaches the line
rate of 10Gbps in a high-speed network.

• A novel system architecture for DDoS counter-
measure mechanisms: the proposed architecture
separates the packet decoder module from the
DDoS Filtering component implementing differ-
ent DDoS filtering mechanisms. This architecture
helps developers to implement filtering modules
independently using output information from the
packet decoder. Therefore, one filtering module can
be reconfigured and updated dynamically without
any interference from other filtering modules.

• Online reconfiguration system: the architecture al-
lows DDoS filtering modules to be reconfigured
while operating, without affecting other modules
or changing the system architecture. Therefore,
system performance is still maintained while being
reconfigured.

The rest of the paper is organized as follows. Sec-
tion 2 analyzes background and related work. Section 3
discusses our proposed DDoS countermeasure system
architecture. Section 4 introduces our system imple-
mentation using a NetFPGA-10G board. Experimental
results are presented in Section 5. Finally, Section 6
concludes the paper and introduces the future work.

2 Background and Related Work

In this section, we present background on DDoS attacks
and DDoS countermeasures. Several proposed systems
in the literature to defend against the DDoS attacks also
discussed in this section.

2.1 Background
Attackers often employ computers or zombies con-

trolled by malicious software to create a botnet to

perform DDoS attacks. They are usually motivated by
incentives such as financial/economical gains, revenge,
ideological belief, intellectual challenge or cyberwar-
fare [1]. Attacks that are for financial gains are dan-
gerous and hard to mitigate.

Zargar et al. [1] classified DoS/DDoS attacks into two
categories: network/transport-level and application-
level flooding attacks. Network/Transport-level based
flooding attacks are performed by exploiting vulner-
abilities of layer 2 to layer 4 in the Open Systems
Interconnection (OSI) network model to exhaust victim
network resources. This category includes flooding at-
tacks, protocols exploitation flooding attacks, reflection-
based flooding attacks, and amplification-based flood-
ing attacks. Flooding attacks often exhaust network
resources by consuming bandwidth or overburdening
network devices. In protocol-exploitation attacks, an
attacker sends malformed packets, such as TCP SYN
flood [5, 6] and TCP SYN/ACK flood [7], to confuse
a victim. In reflection and amplification based attacks,
an attacker broadcasts spoofed packets whose source
addresses are the IP address of a specific victim to make
reflectors/amplifiers. Consequently, responses are sent
back to the victim and cause flooding (i.e., Smurf
attacks, Fraggle attacks).

Application-level based flooding attacks exploit
application-level vulnerabilities, including protocols
and application code, to exhaust victim server re-
sources. Attackers often exploit stateless protocols for
this kind of attack, such as DNS and NTP. Research
in [8] and [9] recorded DNS amplification DDoS attacks
with 300 Gbps. NTP amplification DDoS set a new
record with 400 Gbps in 2014 [10, 11].

Based on attack classifications, DDoS defense mech-
anisms are also classified into network-level and
application-level [1] defense mechanisms. Network-
level based defense mechanisms are deployed to miti-
gate DDoS attacks under network layers. They are cate-
gorized into source-based, network-based, destination-
based, and hybrid mechanisms based on deploy-
ment locations. Port Ingress/Egress Filtering (PIEF)
method [12] can be deployed as a source-based or
destination-based mechanism. In the destination-based
mechanism, Management Information Base (MIB) [13]
is used to monitoring network traffic to detect DDoS
attacks. Hop-Count Filtering (HCF) method [14] can
filter out spoofed packets based on the number of
routers these packets traversed. Research in [1] intro-
duces hybrid methods, such as Stop-It and Active Inter-
net Traffic Filtering (AITF), which incorporate multiple
components across network systems to counter DDoS
attacks.

Application-level based defense mechanisms are de-
ployed to detect application vulnerabilities attacks.
CAPTCHA [15] is an well-known application-based
method to differentiate DDoS flooding bots from hu-
man. This method helps servers to classify and filter
bot-based packets.

T. N. Thinh et al.: FPGA-based Multiple DDoS Countermeasure Mechanisms System Using Partial Dynamic Reconfiguration69

IC
A

P
C

o
n

tr
o

lle
r

Pr
eD

ec
od

e

P
o

st
D

ec
o

d
e

Packet FIFO

D
ec

is
io

n

M
ak

er

P
o

rt
 In

gr
e

ss
/

Eg
re

ss
 F

ilt
er

in
g

H
o

p
-C

ou
n

t
Fi

lt
er

in
g

DPR Controller

Base System
NIC Rx

NIC Rx

NIC Rx

NIC Rx
D

yn
am

ic
 P

ar
ti

al

R
ec

o
nf

ig
u

ra
ti

on
 (

D
PR

)

D
D

o
S

Fi
lt

er
in

g

NIC Tx

NIC Tx

NIC Tx

NIC Tx

Figure 1. The proposed system architecture.

2.2 Related Work

This section introduces several proposed systems in
the literature for detecting spoofed packets. We list
those systems based on their published years.

Ferguson et al. [12] proposed Port Ingress/Egress
Filtering method to filter spoofed packets. The Ingress
or Egress name depends on its deployment position.
Ingress filter is deployed to filter inbound traffic. If
an incoming packet is spoofed, it is blocked. Egress
filter monitors outbound traffic to ensure that malicious
packets cannot leave internal networks.

Research in [16] implemented a DDoS countermea-
sure system applied neural network and Bloom Filter.
The neural network is trained so that it can recognize
abnormal incoming packets. Those packets are then
removed from networks by Bloom Filter.

Katashita et al. [17] introduced an intrusion detec-
tion system (IDS) on FPGA by porting Snort rules
into FPGA devices using the NFA-based method. The
system is implemented on a Virtex-II Pro board and
supports PR to update Snort rules, but the PR process
is offline.

Wang et al. [14] proposed a method named Hop-
Count Filtering (HCF) to filter spoofed packets based
on the number of hops packets traversed before ar-
riving their destinations. Each packet traveling on the
network has its own Time-To-Live (TTL) value. When
a packet traverses a router (hop), its TTL value is
decreased by one before forwarding to the next hop.
Hop-count is calculated by comparing initial TTL value
to final TTL value when the packet arrives at its desti-
nation. A packet is dropped in two difference cases. The
first one is when its TTL value is equal to zero while the
second one is when its Hop-count is not identical with
Hop-counts of other packets coming from the same
source. The paper claimed that HCF can identify 90%
of spoofed packets.

Wang et al. [18] proposed a distributed HCF
(DHCF) model, which was implemented in interme-
diate routers. This method protects not only hosts but
also intermediate networks from malicious packets and
traffic congestion. Experimental results showed that
DHCF achieved better performance than conventional

HCF but maintained user access.
Ayman et al. [19] proposed an upgraded version of

HCF, by storing multiple Hop-count values accord-
ing to multiple routes. This approach modified HCF
method can increase true positive rate because Hop-
count may vary if packets travel through multiple
routes. However, this method suddenly increases false
negative rate, because it increases the chance to attack-
ers to bypass the detector.

Maheshwari et al. [20] combined probabilistic and
round trip time in Distributed Probabilistic HCF-Round
trip time (DPHCF-RTT). Packets are checked once by in-
termediate DPHCF-RTT routers (nodes) and then they
are forwarded to destinations. The larger number of
intermediate routers implemented, the higher detection
rate of malicious packets is. The paper claimed that
detection rate is up to 99.33%.

3 System Architecture

In this section, we describe our proposed FPGA-based
DDoS countermeasure system architecture taking the
dynamic partial reconfiguration technique into con-
sideration. The proposed system architecture includes
three main components: Base System, DDoS Filtering,
and Dynamic Partial Reconfiguration (DPR) compo-
nents as shown in Figure 1.

3.1 Base System

The Base System component is responsible for re-
ceiving packets from networks and extracting header
fields from these incoming packets. These header fields
are sent to the DDoS Filtering component to determine
whether a packet should be dropped or bypassed. Base
System consists of three modules: PreDecode, Packet
FIFO, and PostDecode.

3.1.1 PreDecode: this module decodes and extracts
headers from incoming packets. These headers are then
transferred to the filtering modules in the DDoS Filter-
ing component for classifying. These headers includes
source IP, destination IP, source port, destination port
and TTL value. The raw packets are stored in the Packet

70 REV Journal on Electronics and Communications, Vol. 5, No. 3–4, July–December, 2015

FIFO module while waiting for classifying results from
the filtering modules in the DDoS Filtering component.

3.1.2 Packet FIFO: incoming packets can be processed
by two different approaches. In the first approach,
a packet is de-encapsulated into header and payload
fields. The header field is then sent to the filtering
modules to classify as described above. Finally, if the
packet is legitimate, the header and payload fields are
encapsulated into the packet and sent out to networks.
In contrast, if the packet is classified as a DDoS at-
tack packet, the whole packet is removed. However,
this approach is time-consuming because encapsulating
process takes time. The second approach is to use a
buffer to store full raw packets. This approach helps
to reduce system latency. In this work, we implement
the second approach and name the buffer module as
Packet FIFO.

3.1.3 PostDecode: the PostDecode module selects
packets from the Packet FIFO module and waits for
decisions from the Decision Maker module in the DDoS
Filtering component. The PostDecode module deter-
mines whether the packets should be forwarded or
dropped based on the feedback of the DDoS Filtering
component. If packets are legitimate, they are sent out
to networks. Otherwise, they are removed.

3.2 DDoS Filtering

In Section 2.2, we present several proposed DDoS
countermeasure systems in the literature. However,
each of those approaches only counters a specific DDoS
attack. Therefore, those systems cannot completely rec-
ognize DDoS attack packets when working alone. In
this section, we introduce a combination of the Port
Ingress/Egress Filtering (PIEF) and Hop-count Filtering
(HCF) methods in the DDoS Filtering component. This
combination lets our DDoS Filtering system classify
packets more efficient than systems using only one
DDoS defense method.

3.2.1 Port Ingress/Egress Filtering: in computer net-
work, Ingress filtering is a technique used to guarantee
that incoming packets are actually coming from their
original networks. Routers integrated the Ingress fil-
tering method check source IP addresses of traversing
packets. A router drops a packet if its source IP address
does not belong to the range of addresses to which
the router is connected. Meanwhile, Egress filtering
technique monitors outbound traffic to ensure that
spoofed or malicious packets are not allowed to leave
internal networks. There is a special-purpose address
registry [21] which defines IP address blocks that do
not either appear or exist on the Internet as usual.
Therefore, they should be blocked in PIEF module.

3.2.2 Hop-Count Filtering: although DDoS attackers
can forge any data in the header field of a packet,
they cannot falsify the number of hops that a packet
traverses to reach its destination. The number of tra-
versed hops of a packet, named hop-count, is calculated
by subtracting the final Time-to-Live (TTL) value from
the initial TTL value. TTL is an 8-bit field [22] in the
header field that is originally introduced to define the

maximum lifetime of a packet on the Internet. The final
TTL value is the value when the packet reaches the des-
tination. The initial TTL values are set to 30, 32, 60, 64,
128, or 255 according to Operating System (OS) where
the packet is packed. Listing 1 shows the complete HCF
algorithm we use to detect an illegitimate packet in this
work. The algorithm first calculates Hop-count value
of an incoming packet (line 2-6) using the TTL values.
This value is then compared to the stored Hop-count
(already extracted from previous packets coming from
the same source) (line 7-11). If these values are not
equal, the coming packet is spoofed.

Listing 1. The algorithm of HCF module
1 for each packet begin
2 Tf = extract_TTL(packet);
3 S = extract_IP(packet);
4 Ti = infer_initial_TTL(S);
5 //compute hop count
6 Hc = Ti - Tf;
7 Hs = get_stored_HC(S);
8 if (Hc <> Hs)
9 packet is spoofed;

10 else
11 packet is legitimate;
12 end

3.2.3 Decision Maker: bBased on the output informa-
tion of the PIEF and HCF modules, Decision Maker
module issues a decision to the PostDecode module. A
drop signal alerts the PostDecode module if either PIEF
or HCF realizes a sign of DDoS attack. Otherwise, a
bypass signal is sent to the PostDecode module to allow
the corresponding packet to go through the countering
system.

3.3 Dynamic Partial Reconfiguration
Dynamic Partial Reconfiguration (DPR) is a specific

technique in reconfigurable technology. The technique
allows a reconfigurable device to be re-programmed
some areas while keeping other areas unchanged. The
DPR process can be done even when the system im-
plemented on the device is running. Currently, only
Xilinx FPGAs supporting the DPR technique are avail-
able as commercial devices. Therefore, we focus on
Xilinx FPGA devices and design tools in our discus-
sion from this section. Many interfaces can be used to
configure FPGA devices such as serial configuration
interface, Join Test Access Group (JTAG)/Boundary-
Scan port, SelectMAP, and ICAP. However, only the
ICAP interface supports reconfiguration from internal
FPGA device while others are external interfaces con-
nected through connection pins. Xilinx supports an
ICAP primitive interface [23] to enable read and write
instructions to access the configuration memories of
FPGA devices. The ICAP interface separates read and
write data buses, which can be configured to be 8, 16 or
32 bit-width. The ICAP interface should be operated at
a frequency of 100MHz. Table I shows the specifications
of those configuration interfaces.

In this proposed system architecture, a DPR Con-
troller and an ICAP Controller are used to control the

T. N. Thinh et al.: FPGA-based Multiple DDoS Countermeasure Mechanisms System Using Partial Dynamic Reconfiguration71

Table I
Configuration Interfaces

4 REV Journal on Electronics and Communications: Article scheduled for publication in Vol. 5, No. 3–4, July–December, 2015

3.2 DDoS Filtering

In Section 2.2, we present several proposed DDoS
countermeasure systems in the literature. However,
each of those approaches only counters a specific DDoS
attack. Therefore, those systems cannot completely rec-
ognize DDoS attack packets when working alone. In
this section, we introduce a combination of the Port
Ingress/Egress Filtering (PIEF) and Hop-count Filtering
(HCF) methods in the DDoS Filtering component. This
combination lets our DDoS Filtering system classify
packets more efficient than systems using only one
DDoS defense method.

3.2.1 Port Ingress/Egress Filtering: in computer net-
work, Ingress filtering is a technique used to guarantee
that incoming packets are actually coming from their
original networks. Routers integrated the Ingress fil-
tering method check source IP addresses of traversing
packets. A router drops a packet if its source IP address
does not belong to the range of addresses to which
the router is connected. Meanwhile, Egress filtering
technique monitors outbound traffic to ensure that
spoofed or malicious packets are not allowed to leave
internal networks. There is a special-purpose address
registry [21] which defines IP address blocks that do
not either appear or exist on the Internet as usual.
Therefore, they should be blocked in PIEF module.

3.2.2 Hop-Count Filtering: although DDoS attackers
can forge any data in the header field of a packet,
they cannot falsify the number of hops that a packet
traverses to reach its destination. The number of tra-
versed hops of a packet, named hop-count, is calculated
by subtracting the final Time-to-Live (TTL) value from
the initial TTL value. TTL is an 8-bit field [22] in the
header field that is originally introduced to define the
maximum lifetime of a packet on the Internet. The final
TTL value is the value when the packet reaches the des-
tination. The initial TTL values are set to 30, 32, 60, 64,
128, or 255 according to Operating System (OS) where
the packet is packed. Listing 1 shows the complete HCF
algorithm we use to detect an illegitimate packet in this
work. The algorithm first calculates Hop-count value
of an incoming packet (line 2-6) using the TTL values.
This value is then compared to the stored Hop-count
(already extracted from previous packets coming from
the same source) (line 7-11). If these values are not
equal, the coming packet is spoofed.

Listing 1. The algorithm of HCF module
1 for each packet begin
2 Tf = extract_TTL(packet);
3 S = extract_IP(packet);
4 Ti = infer_initial_TTL(S);
5 //compute hop count
6 Hc = Ti - Tf;
7 Hs = get_stored_HC(S);
8 if (Hc <> Hs)
9 packet is spoofed;

10 else
11 packet is legitimate;
12 end

3.2.3 Decision Maker: bBased on the output informa-
tion of the PIEF and HCF modules, Decision Maker
module issues a decision to the PostDecode module. A
drop signal alerts the PostDecode module if either PIEF
or HCF realizes a sign of DDoS attack. Otherwise, a
bypass signal is sent to the PostDecode module to allow
the corresponding packet to go through the countering
system.

3.3 Dynamic Partial Reconfiguration - DPR
DPR is a specific technique in reconfigurable tech-

nology. The technique allows a reconfigurable device
to be re-programmed some areas while keeping other
areas unchanged. The DPR process can be done even
when the system implemented on the device is run-
ning. Currently, only Xilinx FPGAs supporting the
DPR technique are available as commercial devices.
Therefore, we focus on Xilinx FPGA devices and de-
sign tools in our discussion from this section. Many
interfaces can be used to configure FPGA devices
such as serial configuration interface, Join Test Access
Group (JTAG)/Boundary-Scan port, SelectMAP, and
ICAP. However, only the ICAP interface supports re-
configuration from internal FPGA device while others
are external interfaces connected through connection
pins. Xilinx supports an ICAP primitive interface [23]
to enable read and write instructions to access the
configuration memories of FPGA devices. The ICAP
interface separates read and write data buses, which
can be configured to be 8, 16 or 32 bit-width. The ICAP
interface should be operated at a frequency of 100MHz.
Table I shows the specifications of those configuration
interfaces.

Table I
Configuration interfaces

Configuration Interface Type Bit
Width

Freq
MHz

Bandwidth
MBytes/s

Serial Configuration Port External 1 100 12.5
JTAG/Boundary Scan Port External 1 66 8.25

SelectMap Port External
8 100 100
16 100 200
32 100 400

ICAP Internal
8 100 100
16 100 200
32 100 400

In this proposed system architecture, a DPR Con-
troller and an ICAP Controller are used to control the
partial reconfiguration (PR) process. When receiving a
PR signal from the host, DPR Controller sends a signal
to the PreDecode module to stop sending data to the
reconfigured DDoS filter module. DPR Controller then
deactivates the filtering module before sending a signal
to ICAP Controller to accept the partial bitstream.
When the PR process is finished, ICAP Controller in-
forms DPR Controller to reset the upgraded module.
DPR Controller sends a signal to PreDecode to accept
data to the upgraded module. The DPR and ICAP
architectures are shown in Figure 2 and Figure 3.

AXI Interconnect ICAP Controller

Hop-Count Filtering Port I/E Filtering

P
re

D
ec

o
d

e

Po
st

D
ec

o
d

e

R
eg

. 0
R

eg
. 1

DPR Interface
D

ec
is

io
n

M
ak

e
r

Decoupling 0Decoupling 1

DPR FSM

Control pathData path

DPR Controller

Legend:

Figure 2. The DPR Controller.

DMA Interface DPR Controller

Xilinx Virtex 5
ICAP Primitive

Bus Converter
(256 -> 32) ICAP FSM

Control pathData path

ICAP Controller

Data Stream
FIFO

Legend:

Figure 3. The ICAP Controller.

partial reconfiguration (PR) process. When receiving a
PR signal from the host, DPR Controller sends a signal
to the PreDecode module to stop sending data to the
reconfigured DDoS filter module. DPR Controller then
deactivates the filtering module before sending a signal
to ICAP Controller to accept the partial bitstream.
When the PR process is finished, ICAP Controller in-
forms DPR Controller to reset the upgraded module.
DPR Controller sends a signal to PreDecode to accept
data to the upgraded module. The DPR and ICAP
architectures are shown in Figure 2 and Figure 3.

4 System Implementation

As stated above, currently only Xilinx FPGA devices
supporting dynamic partial reconfiguration are avail-
able in commercial. Therefore, we choose a Xilinx FPGA
board, the NetFPGA-10G board [24] to develop our
prototype system. In this section, we present in detail
our implementation to develop the prototype system.

The NetFPGA-10G board includes four SFP+ ports
and one Xilinx Virtex-5 TX240T FPGA device. Four
SFP+ ports are suitable to build high-speed network
applications. Besides, Xilinx Virtex-5 TX240T provides
powerful hardware resources to handle huge traffic on
a network. We use Hardware Description Language
(HDL) to develop all modules in the three main com-
ponents.

4.1 The PreDecode Module
This module receives raw packets from the network

interfaces through an AXI interface [25]. The AXI inter-
connect is an Xilinx IP core used to connect modules
together in a bus protocol. The raw incoming packets
are parsed to extract header fields. These raw packets
are then sent to the Packet FIFO module while the
header fields are sent to the DDoS filtering component
for further processing.

4.2 The Packet FIFO Module
This module functions as a First In First Out buffer.

In this work, we use the FIFO IP core provided by
Xilinx to implement this buffer. The size of Packet FIFO
is 256-bits in width and 1024 entries in depth. With
this configuration, the Packet FIFO module can store
21 packets in 1500 bytes of size at minimum and 512
packets in 64 bytes of size at maximum.

4.3 The PostDecode Module
The functionality of this module is to send packets

to the 10G NIC TX output ports of the board through
the AXI interface. The PostDecode module receives
control signals from the Decision Maker module (the
DDoS Filtering component). Based on these signals, the
PostDecode module decides whether the packets are
dropped out from the system or forwarded to networks.
In both cases, when packets are dropped or forwarded,
they are removed from the Packet FIFO.

4.4 The Port Ingress/Egress Filtering Module
This module consists of two blocks: Content Ad-

dressable Memory (CAM) and Comparator. Figure 4
describes a diagram of Port Ingress/Egress Filter-
ing (PIEF) module. CAM stores special IP address
blocks [21]. The Comparator compares the IP addresses
of incoming packets with stored IP addresses in CAM.
When the packet source IP address is sent to PIEF,
PIEF searches the address in CAM. If a MISS signal is
returned (i.e., no record was found in CAM), the packet
is legitimate. Otherwise, the packet is illegitimate (i.e.,
a HIT signal is returned). the PIEF module forwards
MISS or HIT signal to Decision Maker for further
processing.

4.5 The Hop-Count Filtering Module
This module consists of three blocks: CAM, Com-

parator, and Register Array as described in Figure 5.
Due to the limitation of NetFPGA 10G board hardware

72 REV Journal on Electronics and Communications, Vol. 5, No. 3–4, July–December, 2015

P
re

D
ec

o
d

e

D
ec

is
io

n
 M

ak
er

CAM

Compare

Port Ingress/Egress
Filtering

Source IP HIT/MISS
signal

Figure 4. The architecture of the Port Ingress/Egress module.

Pr
eD

ec
od

e

D
ec

is
io

n
 M

ak
er

CAM
(IP Addr)

Compare

Hop-Count Filtering
Source IP

TTL
HIT/MISS

signal

Reg. Array
(Hop-Count)

Calc.
Hop-Count

Figure 5. The architecture of HCF module.

resources, we build two versions of CAM, 128 and 256
entries. The module receives a packet source IP address
and its TTL value from the PreDecode module. This
module calculates the actual Hop-count of the incoming
packet using TTL value. The module, then, looks up
this IP address in CAM and gets the stored Hop-
count in the Register Array. If the stored Hop-count is
equal to calculated Hop-count, the packet is legitimate.
Otherwise, the packet is spoofed. When this is the first
time the packet has come to the system (i.e., whose
source IP does not exist in CAM), CAM returns a MISS
signal and stores both the packet source IP address and
calculated Hop-count into Register Array. However, the
initial TTL value can be forged. It means that the packet
is spoofed, but HCF could not recognize that because of
the lack of information. That is the main disadvantage
and limitation of the HCF mechanism. Therefore, we
consider combining PIEF and HCF.

The method storing and looking up Hop-count of an
incoming packet as described above is named as IP2HC
method. CAM is usually used for storing IP address in
most FPGA-based networking system because of its fast
query response. However, CAM can return index and
a HIT or MISS signal only. Therefore, we store hop-
count in Register Array instead of CAM. Furthermore,
the incorporation of CAM and Register Array improves
query time. The index of CAM and Register Array is
a direct one-to-one mapping. If source IP address of a
packet is stored in CAM at index k, the returned value
of Register Array at index k is the hop-count value of
that packet. Table II and III show an example of the
IP2HC method that we develop in this work. When
looking for IP address 134.170.188.221, for example,
CAM returns an index of 1. Based on this index,
Register Array returns 10 as the hop-count value of this
IP address.

4.6 The Decision Maker module

This module issues final decisions to the Base System
component based on the decision signals from the PIEF
and HCF modules. Either PIEF or HCF sends a drop

Table II
CAM

Index IP blocks
1 134.170.188.0/24
... ...

N -1 98.138.253.0/24
N 216.58.221.0/24

Table III
Register Array

Index Hop-count value
1 10

... ...
N - 1 25

N 8

Table IV
The Device Utilization Summary of the System

Modules Max
Frequency
(Mhz)

Registers BlockRAM
(KByte)

System 116.782 59,784 5,814
Base System 262.522 95 468
HCF_128 120.043 29 4,608
HCF_256 118.876 54 6,300
PIEF 247.452 111 108
DPR & ICAP 116.875 4,766 0

signal, Decision Maker instantly turns on a drop signal
to the PostDecode module. Otherwise, Decision Maker
sends a bypass signal to the PostDecode module.

4.7 The DPR Controller
This module receives PR signal from the host through

the AXI-Lite interface, an another bus-like protocol
interconnect. This module has a control signal register
to receive PR command from the host and get feedback
status. Each reconfigurable module has a decoupling
gate to eliminate pulse noise while reconfiguring.

4.8 The ICAP Controller
This module receives a partial bitstream from the host

DMA through an AXI-Stream interconnect. AXI-Stream
provides 256-bit data bus while the ICAP primitive
supports a 32 bit-width data interface only. Therefore,
we have to segment data into 32-bit blocks to feed
into the Xilinx Virtex 5 ICAP Primitive, an Xilinx ICAP
IP core. A data buffer is used to sequentially transfer
partial bitstream to ICAP.

The system is synthesized by ISE 13.4 without any
manual optimization. Table IV shows hardware re-
sources usage as well as maximum possible frequency
of each module.

5 Experiments

In this section, we present our experiments with the
system implemented in the previous section. We also
analyze the throughput and packet classification results
of the system in this section.

5.1 Experimental Setup
To measure the accuracy and throughput of the sys-

tem, we deploy a testing model as shown in Figure 6.
NetFPGA 10G boards and Open Source Network Tester
(OSNT) [26] are used for both throughput and accuracy

T. N. Thinh et al.: FPGA-based Multiple DDoS Countermeasure Mechanisms System Using Partial Dynamic Reconfiguration73

OSNT Packet Monitor

DDoS Countermeasure

Router

user

attacks

zombie

attacks

zombie

Le
gi

ti
m

at
e

p
ac

ke
ts

OSNT Packet Monitor

attacks

zombie

Sp
o

o
fe

d
 p

ac
ke

ts

10 Gbps SFP+ Port 3
SFP+ Port 2
SFP+ Port 1

SFP+ Port 0

Xilinx
Virtex 5

SFP+ Port 3
SFP+ Port 2
SFP+ Port 1
SFP+ Port 0

Xilinx
Virtex 5

SFP+ Port 3
SFP+ Port 2
SFP+ Port 1
SFP+ Port 0

Xilinx
Virtex 5

Figure 6. The accuracy testing model of the system.

7
.7

2
7

8
.6

7
5

9
.2

8
6

9
.6

2
7

9
.8

0
9

9
.8

6
9

5
.1

2

1
7

.3
5

1
8

.5
7

2

1
9

.2
5

4

1
9

.6
1

8

1
9

.7
3

8

7
.7

3

8
.6

8

9
.2

9

9
.6

3

9
.8

1

9
.8

7

0

2

4

6

8

10

12

14

16

18

20

64 128 256 512 1024 1500

Gbps

Packet size (Bytes)

Half-duplex Full-duplex OSNT Generator

Figure 7. The throughput of the experimental system

testing model. OSNT is a flexible tool; it can generate
and capture packets of any size at the line-rate speed of
10 Gbps. The throughput testing model is used to test
decoding speed. We prepare TCP/UDP packets with
various sizes from 64 to 1500 bytes. These packets are
sent out at the maximum speed of OSNT Generator.
We use OSNT Monitor to measure the throughput. In
the accuracy testing model, we test the combination of
two filters: PIEF and HCF. Three computers function as
zombies to attack the system, another one is a normal
user. We prepare TCP/UDP packets with various sizes.
Some of those packets are real and collected from
the Internet to test HCF. Some packets are synthetic
generation to test PIEF. Classified packets are captured
to evaluate and figure out the detection rate (DR), false
positive rates (FPR), and false negative rates (FNR).

5.2 Experimental Results
Figure 7 presents throughput of the experimental

system. The vertical axis shows throughput values in
Gbps. The horizontal axis shows packet size of test
cases. For each test case of packet size, the left, middle,
and right columns show packet decoding speed in half-
duplex mode, full-duplex mode, and the packet gener-
ating speed of OSNT, respectively. Experimental results
in Figure 7 show that throughput of the system nearly
achieves the maximum speed of packet generator in
half-duplex mode at 9.869 Gbps. In full-duplex mode,
the system stably achieves twice the throughput of half-
duplex mode and up to 19.738 Gbps, except test case
of 64-Byte packets.

Table V shows the statistical values of accuracy test
of the system. The results are collected by evaluating
captured classified packets. We repeat test cases twice
in each version of CAM. In all test cases, the DR is up to
100% while the FNRs are 0%. Our achieved DR is better

Table V
The Packet Classification Statistic

CAM
size

Test
case Expected result

Classified result

Legitimate Spoofed

128
entries

1
Legitimate 286162 286162 0
Spoofed 13838 0 13838

2
Legitimate 286162 286162 0
Spoofed 13838 0 13838

256
entries

1
Legitimate 266757 266319 438
Spoofed 33243 0 33243

2
Legitimate 266757 266285 472
Spoofed 33243 0 33243

0-64 64-128 128-256 256-512 512-1024 1024-1500
Packet length (Bytes)

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%

100%

De
te

ct
io

n
ra

te
 (%

)

100.0 100.0 100.0 100.0 100.0 100.0

0.0 0.0 0.0 0.0 0.0 0.0

100.0 100.0 100.0 100.0 100.0 100.0

0.33 0.74 0.19 0.17 0.13 0.12

Detection rate_128
False negative_128
False positive_128
Detection rate_256
False negative_256
False positive_256

Figure 8. The packet classification statistic ratio.

than results claimed in [14] and [20]. In the 128 entries
CAM test cases, FPRs are 0%. In 256 entries CAM test
cases, FPRs are closed to 0.16%. We also do statistic
based on packet sizes. The packets are classified into 6
groups: less than 64 Bytes, 64-128 Bytes, 128-256 Bytes,
256-512 Bytes, 512-1024 Bytes, and 1024-1500 Bytes. Fig-
ure 8 shows the DR, FPR, and FNR of the experimental
system based on packet sizes and CAM version. In all
test cases, DRs are 100% while FNRs are 0%. In the 128
entries CAM version, the FPRs are 0%. In the 256 entries
CAM version, FPRs vary, but they are downtrend on
uptrend according to the increasing of packet sizes.
FPRs are 0.33%, 0.74%, 0.19%, 0.17%, 0.13%, and 0.12%
for packet sizes at less than 64 Bytes, 64-128 Bytes,
128-256 Bytes, 256-512 Bytes, 512-1024 Bytes, and 1024-
1500 Bytes, respectively.

We do partial reconfiguration (PR) experiments with
two reconfigurable logic regions for the PIEF and HCF
modules. We develop a software program to commu-
nicate with DPR through DMA to check and send bit-
stream files to ICAP Controller. The software program
is responsible for calculating the PR time. We also do
PR experiments through JTAG and DMA AXI-Lite in
this work. Table VI shows the PR throughput of the
experimental system. We are going to optimize DPR
by applying pipelining. As the pipelining simulation,
we may achieve throughput up to 370 Mbps at the
frequency of 100 MHz.

74 REV Journal on Electronics and Communications, Vol. 5, No. 3–4, July–December, 2015

Table VI
The Partial Reconfiguration Experiment

Method Bitstream
size (KB)

PR time
(second)

Throughput
(KByte/s)

JTAG
256 2.577 99.340
822 3.807 215.918

DMA
(AXI-Lite)

256 0.127 2,015.748
822 0.378 2,174.603

DMA
(AXI-Stream)

256 0.026 9,846.154
822 0.082 9,903.614

6 Conclusion

In this paper, we propose a novel FPGA-based system
to defend against DDoS attacks using reconfigurable
hardware. Our DDoS countermeasure system combines
Port Ingress/Egress Filtering and Hop-Count Filtering
techniques. The Base System component provides high-
speed packet decoder and helps reducing system la-
tency. With partial reconfiguration modules, our system
can be flexibly adapted to the change of DDoS attacks
just in several milliseconds. With our approach, the
packet decoding speed of the system reaches the line-
rate speed of 10 Gbps network, achieves twice in full-
duplex mode. Moreover, the combination of PIEF and
HCF improves the packet detection rate up to 100%
with the false negative rate closed to 0% and false
positive rate closed to 0.16%.

Acknowledgment

This research is funded by Vietnam National University,
Ho Chi Minh City, under grant number C2015-20-09.

References

[1] S. Zargar, J. Joshi, and D. Tipper, “A survey of defense
mechanisms against distributed denial of service (DDoS)
flooding attacks,” Communications Surveys Tutorials, IEEE,
vol. 15, no. 4, pp. 2046–2069, Apr. 2013.

[2] R. Beverly, M. Luckie, and R. Koga, “Spoofer Project:
State of IP Spoofing,” Mar. 21, 2016. [Online]. Available:
http://spoofer.caida.org/summary.php

[3] Xilinx, “UG702: Partial Reconfiguration Guide,” Xilinx,
Apr. 24, 2012.

[4] S. Hansen, D. Koch, and J. Torresen, “High Speed Par-
tial Run-Time Reconfiguration Using Enhanced ICAP
Hard Macro,” in IEEE International Symposium on Par-
allel and Distributed Processing Workshops and PhD Forum
(IPDPSW), May 2011, pp. 174–180.

[5] H. Wang, D. Zhang, and K. Shin, “Detecting SYN flood-
ing attacks,” in Proceedings of the Twenty-First Annual
Joint Conference of the IEEE Computer and Communications
Societies (INFOCOM 2002), vol. 3, Jun. 2002, pp. 1530–
1539.

[6] W. Chen and D.-Y. Yeung, “Defending against TCP SYN
flooding attacks under different types of IP spoofing,”
in International Conference on Networking, International
Conference on Systems and International Conference on Mo-
bile Communications and Learning Technologies (ICNICON-
SMCL’06), Apr. 2006, pp. 38–38.

[7] J. Mirkovic and P. Reiher, “A Taxonomy of DDoS At-
tack and DDoS Defense Mechanisms,” ACM SIGCOMM

Computer Communication Review, vol. 34, no. 2, pp. 39–53,
Apr. 2004.

[8] P. Bright, “When spammers go to war: Behind the
Spamhaus DDoS,” Mar. 29, 2013. [Online]. Avail-
able: http://arstechnica.com/security/2013/03/when-
spammers-go-to-war-behind-the-spamhaus-ddos/

[9] C. Fachkha, E. Bou-Harb, and M. Debbabi, “Fingerprint-
ing Internet DNS Amplification DDoS Activities,” in 6th
International Conference on New Technologies, Mobility and
Security (NTMS), Mar. 2014, pp. 1–5.

[10] A. Network, “Worldwide infrastructure security report,”
Technical Report, vol. 10, 2015.

[11] M. Prince, “Technical Details Behind a 400Gbps
NTP Amplification DDoS Attack,” Feb. 13, 2014.
[Online]. Available: https:// blog. cloudflare. com/
technical- details- behind-a- 400gbps- ntp-amplification-
ddos-attack/

[12] F. P and S. D, “Network ingress filtering: Defeating
denial of service attacks which employ ip source address
spoofing,” Internet RFC2827, May 2000.

[13] J. Cabrera, L. Lewis, X. Qin, W. Lee, R. Prasanth,
B. Ravichandran, and R. Mehra, “Proactive detection
of distributed denial of service attacks using mib traf-
fic variables-a feasibility study,” in Proceedings of the
IEEE/IFIP International Symposium on Integrated Network
Management, 2001, pp. 609–622.

[14] H. Wang, C. Jin, and K. G. Shin, “Defense Against
Spoofed IP Traffic Using Hop-Count Filtering,”
IEEE/ACM Transactions on Networking (ToN), vol. 15,
no. 1, pp. 40–53, Feb. 2007.

[15] L. V. Ahn, M. Blum, N. J. Hopper, and J. Langford,
“CAPTCHA: Using Hard AI Problems for Security,” in
Proceedings of the 22nd International Conference on Theory
and Applications of Cryptographic Techniques, ser. EURO-
CRYPT’03. Berlin, Heidelberg: Springer-Verlag, 2003,
pp. 294–311.

[16] Y. Xiang and W. Zhou, “Classifying DDoS packets in
high-speed networks,” International journal of computer
science and network security, vol. 6, no. 2B, pp. 107–115,
2006.

[17] T. Katashita, Y. Yamaguchi, A. Maeda, and T. Kenji,
“FPGA-based intrusion detection system for 10 gigabit
ethernet,” IEICE transactions on information and systems,
vol. 90, no. 12, pp. 1923–1931, 2007.

[18] X. Wang, M. Li, and M. Li, “A scheme of distributed
hop-count filtering of traffic,” in IET International Com-
munication Conference on Wireless Mobile and Computing
(CCWMC 2009), Dec. 2009, pp. 516–521.

[19] M. Ayman, E. Imad, K. Ayman, and C. Ali, “IP Spoofing
Detection Using Modified Hop Count,” 28th International
Conference on Advaned Information Networking and Appli-
cations, IEEE, pp. 512–516, May 2014.

[20] R. Maheshwari, C. Krishna, and M. Brahma, “Defending
network system against IP spoofing based distributed
DoS attacks using DPHCF-RTT packet filtering tech-
nique,” in International Conference on Issues and Challenges
in Intelligent Computing Techniques (ICICT), Feb. 2014, pp.
206–209.

[21] M. Cotton and L. Vegoda, “Special Use IPv4 Addresses.”
[22] J. Postel, “Internet protocol,” 2012. [Online]. Available:

https://tools.ietf.org/pdf/rfc791.pdf
[23] Xilinx, “UG191: Virtex-5 FPGA Configuration User

Guide,” Xilinx, Oct. 19, 2012.
[24] ——, “NetFPGA 10G,” Jan. 2013. [Online]. Avail-

able: http://netfpga.org/site/#/systems/3netfpga-
10g/details/

[25] ——, “UG761: AXI Reference Guide,” Xilinx, Mar. 7,
2011.

[26] G. Antichi, “The open source network tester,” 2012.
[Online]. Available: http://osnt.org/

T. N. Thinh et al.: FPGA-based Multiple DDoS Countermeasure Mechanisms System Using Partial Dynamic Reconfiguration75

Tran Ngoc Thinh received the B.E. degree
in Computer Engineering from the Ho Chi
Minh City University of Technology, Vietnam,
in 1999. He received his M.E. and Ph.D. from
the King Mongkut’s Institute of Technology
Ladkrabang, Thailand in 2006 and 2009, re-
spectively. He is now a lecturer at the De-
partment of Computer Engineering, Faculty of
Computer Science and Engineering, Ho Chi
Minh City University of Technology, Vietnam.
His research interests include network secu-

rity and bioinformatics on reconfigurable devices. He is a member of
the IEEE.

Cuong Pham-Quoc is currently a lecturer
at the Faculty of Computer Science and En-
gineering, Ho Chi Minh City University of
Technology, Vietnam. He received his BEng
degree in Computer Science and Engineer-
ing and MEng degree in Computer Science
form the Ho Chi Minh City University of
Technology in 2007 and 2009, respectively. In
2015, he got his PhD degree in Computer
Engineering from the Delft University of Tech-
nology, The Netherlands. His research interest

include: multi-/many-core architectures, high performance comput-
ing, heterogeneous hardware accelerators, on-chip interconnect, and
hardware/software co-design. He is a member of the IEEE.

Biet Nguyen-Hoang received his B.Eng. De-
gree in Information Technology from Nong
Lam University, Ho Chi Minh City, Vietnam
in 2008. He is currently working as System
Engineer in IBM Vietnam. He is also working
towards the M.Eng. Degree in Computer Sci-
ence from the Ho Chi Minh City University of
Technology, Vietnam. His research interests in-
clude network security, software-defined net-
works and applications on reconfigurable de-
vices.

Thuy-Chau Tran-Thi received her B.Eng in
Computer Engineering from Ho Chi Minh
University of Technology in 2016. Currently,
she is an assistant lecturer in the Faculty of
Computer Science and Engineering, Ho Chi
Minh University of Technology. Her research
includes network security and applications on
the reconfiguration devices

Chien Do-Minh received his Honor Bachelor
in Computer Engineering from Ho Chi Minh
City University of Technology, Vietnam, in
2016. He is currently working at the assis-
tant position in Faculty of Computer Science
and Engineering, Ho Chi Minh University of
Technology, Vietnam. His research interests
include network security and applications on
reconfigurable devices.

Quoc Nguyen-Bao received his Honor Bach-
elor of Engineering in Computer Engineer-
ing from Ho Chi Minh City University of
Technology, Vietnam, in 2016. He is currently
working as an assistant lecturer in the Faculty
of Computer Science and Engineering, Ho Chi
Minh University of Technology. His research
interests include network security, advanced
networks and applications on reconfigurable
devices.

Nguyen Quoc Tuan is a senior lecturer at the
Faculty of Computer Science and Engineer-
ing, Ho Chi Minh City University of Tech-
nology, Vietnam. He got his bachelor degree
from Military Technical Academy (currently,
Le Qui Don Technical University) in 1982.
In 1999, he received his master degree in
Computer Science from Ho Chi Minh City
University of Technology. His research in-
terests include micro-processor-based appli-
cations, sensor signals processing, hardware

description languages, and reconfigurable computing.

