
76 REV Journal on Electronics and Communications, Vol. 5, No. 3–4, July–December, 2015

Regular Article

State Space Reduction on Wireless Sensor Network Verification
Using Component-Based Petri Net Approach
Khanh Le, Thang Bui, Tho Quan

Ho Chi Minh City University of Technology, Vietnam National University, Ho Chi Minh City, Vietnam

Correspondence: Thang Bui, thang@cse.hcmut.edu.vn
Communication: received 10 December 2015, revised 18 March 2016, accepted 4 April 2016
Online publication: 10 October 2016, Digital Object Identifier: 10.21553/rev-jec.138
The guest editor coordinating the review of this article and recommending it for publication was Dr. Tran Manh Ha.

Abstract– With the recent advancement of Internet of Things, the applications of Wireless Sensor Networks (WSNs) are
increasingly attracting attention from of both industry and research communities. However, since the deployment cost of a
WSN is relatively large, one would want to make a logic model of a WSN and have the model verified beforehand to ensure
that the WSN would work correctly and effectively once practically employed. Petri Net (PN) is very suitable to model a
WSN, since PN strongly supports modeling concurrent and ad-hoc systems. However, verification of a PN-modeled system
suffers from having to explore the huge state space of the system. In order to overcome it, in this paper we suggest a novel
component-based approach to model and verify a PN-modeled WSN system. First of all, the original WSN system is divided
into components, which can be further abstracted to reduce the model size. Moreover, when verifying the corresponding PN
model produced from the abstracted WSN, we introduce a strategy of component-based firing, which can reduce the state
space significantly. Compared to typical approach of PN-based verification, our method enjoys an impressive improvement
of performance and resource consuming, as depicted in our experimental results.

Keywords– Wireless Sensor Networks, Congestion Detection, Formal Verification, Component-based Petri Net.

1 Introduction

Petri net (PN) is particularly well-suited for model-
ing and analyzing network systems and protocols [1].
Basically, a Petri net is a directed bipartite graph,
featuring transitions and places. Each place contains a
number of tokens. When all source places of a transition
have enough requested tokens, this transition is firable.
Whenever the transition is fired, the requested tokens
are removed from the source places and new tokens
are created in destination places.

Research on modeling network using PN have been
carried out decades ago. In [2] a model is proposed
to implement ATM (Asynchronous Transfer Mode) net-
works and the applications running over it. Transferring
all multimedia data over the switching network of
an ATM network constitutes a big challenge. Since
ATM is a connection-oriented protocol, the switching
network must establish a virtual connection from one
of its input ports to an output port before forwarding
incoming ATM cells (packets) along that virtual con-
nection. Because of restricted bandwidth, multimedia
data must be split to fix-length units before sending
without losing behavior. Most approaches use queue-
based or stochastic-based models, but however ignore
synchronization. Dividing the ATM network into some
synchronous models and forcing them to cooperate
increases the transmission rate. Thus, using Petri nets
for modeling has proved promising. [3] also uses Petri
nets to model a LAN switched network architecture.
Components of this model include switches, servers,

clients and interactions between them. The purpose of
this model is to verify the influence of the switch buffer
size and the rate of packet loss on the quality of the
transmission.

Recently, PN has been used to model wireless sensor
networks (WSNs) [4]. WSN has been pursued by great
attentions from research community due to its appli-
cations in reality including environmental monitoring,
military monitoring and healthcare, etc. In [4], a model
of WSN is proposed a set of sub-models including
sensor models and channel models. Sensors are divided
into three kinds of models, including source, sink and in-
termediate, while channels are divided correspondingly
to unicast, multicast and broadcast models.

The next process after modeling is property verifica-
tion. The verification of a property is done typically by
using Model Checking (MC) [5]. MC allows analyzing
complex concurrent systems in order to investigate
their behaviors and verify whether a specified property
holds during the system execution. This task is achieved
by exploring the state space, i.e. a directed graph whose
nodes represent reachable states of the system and the
arcs represent the transitions between states. This graph
is called reachability graph. For instance, [6, 7] use MC to
verify the confidence of security protocols i.e. to check
that a protocol has the right properties as dictated by
the requirements of the corresponding system.

Besides the well-known advantages, MC suffers from
the infamous disadvantage of state space explosion. This
drawback becames serious when this technique is ap-
plied for industrial systems verification. To cope with

1859-378X–2015-3404 c© 2015 REV



K. Le et al.: State Space Reduction on Wireless Sensor Networks Verification Using Component-Based Petri Net Approach 77

it, there are two main approaches proposed, including
reducing the size of model (i.e. the lesser number of places
and transitions, the lesser explored states of reachability
graphs); or reducing directly the states of reachability graph
during the verification process.

Our paper is the combination of two above ap-
proaches. In one hand, we divide the original model
into components, each of which can be abstracted to
reduce the model size. In the other hand, we suggest an
approach known as Component-Based Firing to directly
reduce the state space of rechability graph once veri-
fied. WSN model is made from two components being
sensor component and channel component. Every compo-
nent is a PN model i.e. it contains the set of places
and transitions. This work has been adopted from [4].
However, the most interesting thing of this paper is
that state space of reachability graph is smaller than
the traditional one by applying our proposed method
of Component-Based Firing that enforces the firing of
the whole component at once instead of the multiple
firing of each single transition. The state space is hence
reduced significantly since we can skip the intermediate
places and transitions on each component. As com-
pared to [4], we enjoy much performance improvement
in our experiments.

The rest of the paper is organized as follows. Sec-
tion 2 recalls some background of Petri Net. Section 3
illustrates how to model and verify WSN by PN. Sec-
tion 4 explains in details how the Component-Based
Firing works. More extensive experiments are reported
in Section 5. Subsequently, Section 6 discusses related
works. Finally, Section 7 draws conclusions of our work.

2 Preliminaries

Petri net (see e.g. [8–10]) is a graphical formal modeling
language widely used for modeling network systems
and protocols [1]. There are several kinds of Petri net.
In this paper, we adopt the most basic form, known as
Place/Transition Net, whose formal definition is given
as follows.

Definition 1 (Petri net).
A Petri net is a tuple N = 〈P, T, F, W, M0〉 where:
• P is a finite set of places;
• T is a finite set of transitions;
• the sets P and T are disjoint, i.e. P ∩ T = ∅;
• F ⊆ (P× T) ∪ (T × P) is the flow relation;
• W : F →N+ is the arc weight mapping; and
• M0 : P → N is the initial marking, representing the

initial distribution of tokens.

For example, Figure 2(a) depicts a simple PN, con-
sisting of three places of input, int and output. This PN
has two transitions including generate packet and send
packet. All arcs of this PN are implicitly weighted by 1.
This PN models a sensor. As its initial marking, the PN
has one token in place input.

Definition 2 (Firing).
Let N = {P, T, F, W, M0} be a Petri net and M : P → N

be a marking of N .

Sensor1

Sensor2

Sensor3

Sensor4

Sensor5

Sensor6

Sensor7

Figure 1: WSN example.

A transition t ∈ T is enabled in marking M, written M t−→
iff ∀p ∈ P : M(p) > W(p, t).
An enabled transition can fire, producing the successor
marking M′, written M t−→ M′, where: ∀p ∈ P : M′(p) =
M(p)−W(p, t) + W(t, p).

For example, in the initial marking of the PN given
in Figure 2(a), transition generate packet is enabled,
whereas send packet is not. It implies that in this current
status, the sensor can generate a packet but cannot send
one (since there currently is no generated packet).

When generate packet fires, the number of tokens in
input decreases by 1 (e.g. 0), whereas that of the tokens
in int is increased by 1 (e.g. 1), introducing a new
marking. In this new marking, send packet can fire,
indicating that now the sensor can send a packet, which
was previously generated.

Thus, PNs are very useful and suitable to model op-
erations of WSN, as further discussed in the following
sections.

3 Model and Verification of Wireless

Sensor Networks Using Petri Net

In this section, we review the idea of [4], which includes
the process of modeling WSN using PN, the abstraction
technique applies to PN model and PN traditional
verification process.

3.1 Component-Based PN Model

A WSN W can be defined as the set of sensors
and channels, i.e. W = {S, C} where S is the set of
sensors and C the set channels. Depending on the
function, sensors are divided into three types of source,
sink and intermediate. A source undertakes the role of
generating new packets and sending them out. Pack-
ets are received by intermediate sensors and continue
transmitting via network until reaching sink. A sink
receives packets and process the information on them.
These sensors can be connected in unicast, multicast or
broadcast mode, each of which specifies whether certain
pairs of sensors can exchange information or not. If two
sensors can communicate, we say that there is a channel
established for these sensors. Information on sensors
and channels forms the topology of a WSN. Figure 1



78 REV Journal on Electronics and Communications, Vol. 5, No. 3–4, July–December, 2015

input

generate
packet

int

send
packet

output

(a) Source node

input

receive
packet

int

process
packet

output

(b) Sink node

input

receive
packet

int

send
packet

output

(c) Intermediate node

input

receive
packet

int

send
packet

output1

output2

output3

(d) Broadcast channel

input

receive1

int1

send1

output1

receive2

int2

send2

output2

receive3

int3

send3

output3

(e) Unicast channel

receive1

int1

send1

output1

input receive2

int2

send2

output2

receive3 int3

send3

output3

(f) Multicast channel

Figure 2: Corresponding component Petri net models of sensors and channels.

gives an example of simple WSN in which Sensor 1 and
Sensor 7 play the roles of source and sink, respectively.

Definition 3 (Component).
A component Com is a Petri net where the set of places is
the union of three disjoint sets: PCom = Pin ] Pout ] Pinter
defined as follows:
• Pin is a non-empty set of input places, i.e. (T× Pin)∩

F = ∅.
• Pout is a non-empty set of output places, i.e. (Pout ×

T) ∩ F = ∅.
• Pinter is the set of all other (intermediate) places in Com.

For instance, a source sensor in a WSN can be mod-
elled as a component as shown in Figure 2(a) where
Input is the input place, Output the output place and
int an intermediate place. Transition Generate Packets
allows the Sensor to generate new packets and then
send them with transition Send Packets. Similarly, a sink
and intermediate sensors are modeled in Figures 2(b,c).
All Channels have two main functions: receiving packets
(transition Receive Packets) and sending packets (transi-
tion Send Packets) which are modeled as presented in

P_Comout

Connector

P_Comin

Figure 3: Connector.

Figures 2(d,e,f), corresponding to three cases of unicast,
multicast and broadcast modes, respectively.

Definition 4 (Component-based Petri net).
A component-based Petri net is a Petri net made from a
disjoint set of components SCom = {Com1, . . . , Comn} and a
set of connectors SC = {C1, . . . , Ck} where a connector Ci
is a transition from the output places of a component to the
input places of another component, as depicted in Figure 3.

Figure 4 is an example of a Component-based Petri
net which includes three components Source (S1),
Channel (T1) and Sink (S2) and two connectors T1_con
and T2_con. We hereafter refer to this Petri net as
WSNCom.

Figure 5 is a conversion from Figure 1 into PN model.



K. Le et al.: State Space Reduction on Wireless Sensor Networks Verification Using Component-Based Petri Net Approach 79

S1_in

S1_gen

S1_int

S1_send

S1_out

T1_con

T1_in

T1_rec

T1_int

T1_send

T1_out

T2_con

S2_in

S2_rec

S2_int

S2_pro

S2_out

Source Channel Sink

Figure 4: Component-based PN of wireless sensor network.

Figure 5: PN model of Figure 1.

Definition 5 (Component Abstraction).
A component Com in a Component-based PN can be re-
duced to an abstracted place (place-based abstraction).
Alternatively, Com and all of its attached connectors can
be reduced to an abstracted transition (transition-based
abstraction).

Figures 6(a,b) are examples of Sensor Abstraction and
Channel Abstraction. Figure 7 is an example of PN model
of Figure 1 when we abstract both sensors and channels.
By abstracting a component-based Petri net model, we
can obtain a new model of far smaller size, which can
subsequently be used for further verification in the next
step.

3.2 Traditional Petri Net Verification

Once modeled properly by component-based PN, a
WSN can be verified for various properties. In this
paper, we target one of most important properties
which is always required to be checked on a WSN:
network congestion [11, 12]. We apply MC technique
that is widely used for verification with PN models.
This technique verifies whether a property holds on a
model by exploring all of possible state space, i.e. a
directed graph whose nodes represent reachable states

S1

T1_con

T1_in

T1_rec

T1_int

T1_send

T1_out

T2_con

S2

(a) Sensor Abstraction.
S1_in

S1_gen

S1_int

S1_send

S1_out

T_a

S2_in

S2_rec

S2_int

S2_pro

S2_out

(b) Channel Abstraction.

Figure 6: Sensor and channel abstraction models.

Figure 7: PN abstraction model of Figure 1.



80 REV Journal on Electronics and Communications, Vol. 5, No. 3–4, July–December, 2015

Figure 8: Generated reachability graph when using the traditional firing rule.

of the system and the arcs represent the transitions
between states. This graph is called reachability graph.

Whenever one transition on PN is fired, a new mark-
ing is created. The set of marking forms a reachabil-
ity graph. In order to check whether properties are
satisfied, MC uses a simple (Depth-First or Breadth-
First) Search to explore this graph from the initial state
and try to reach some targets. For instance, Figure 8
is the reachability graph of traditional firing which is
generated from Figure 7.

In this graph, the start state is 1, the ended state
is 16 and congested state (target) is 26 (red state).
Normally, the search algorithm starts from the state 1
and tries to reach the target state, i.e. state 26. A path
is randomly chosen. If even though visiting ended
state, the target cannot be reached on such path, the
algorithm will return and choose another one. A path
1 → 2 → 4 → · · · → 16 is an example of unreachable
target paths. It is easy to recognize that there are a
huge number of paths which do not lead to target
in reachability graph, thus leading to the state space
exploration situation.

Sensor1

Sensor2

Sensor3

Sensor4
Sensor5

Figure 9: Another WSN example.

4 Component-Based Verification of

PN-modeled Systems

In this section, we introduce Component-Based Fir-
ing rule which is effectively used for verification on
Component-Based PN Model. In order to easily follow
the idea of Component-Based Firing, let us start with
a simple WSN topology in Figure 9 which is a WSN
whose corresponding sensor-abstracted PN model is
given in Figure 10.

Typically, the traditional way to model-check a PN
model is to explore all markings of the model, each of



K. Le et al.: State Space Reduction on Wireless Sensor Networks Verification Using Component-Based Petri Net Approach 81

S1 T1_rec

T1_int

T1_send S2 T2_rec

T2_int

T2_send

S3

T3_rec

T3_int
T3_send

S4 T4_rec

T4_int

T4_send S5

Figure 10: PN generation in broadcast mode (sensor-
abstracted) of Figure 9.

which is treated as a state. However, in the case of WSN
verification, we need to ensure that the WSN model
works properly in terms of timing. The marking given
in Figure 11(a) presents a situation when Sensor 1 sends
packets to Sensor 2 and Sensor 3 in broadcast mode.
From here, several possible markings can be generated.
In Figure 11(b) is the marking presenting the situation
that Sensor sends packets to Sensor 4, and then Sensor 4
further forwards the packets to Sensor 5 as illustrated
in Figure 11(c).

However, in the real situation, as Sensor 2 and Sen-
sor 3 received packets from Sensor 1 and then continue
sending those packets to Sensor 4 at almost the same
time, Sensor 4 should only send packets to Sensor 5
after receiving packets from both Sensor 2 and Sensor 3.
In other words, the marking introduced in Figure 11c
is not feasible and should not be verified.

As a PN model is composed of several components,
we deal with this situation by enforcing the concurrent
mechanism as follows. At a certain state corresponding
to a marking, a new state is introduced by firing all
of currently-enabled transitions in all components. This
simulates the real operational mechanism that all com-
ponents are working concurrently in the real situation.
Thus, at the marking presented in Figure 11(a), as
there are two enabled transitions in two channels (note
that channels are the only remained components on
the model after the sensors are abstracted) connecting
Sensor 2 and Sensor 3 to Sensor 4, both transitions
are then needed to be fired to introduce a new state
corresponding the marking illustrated in Figure 11(e).
The order for firing these transitions thus does not
matter. After that, Sensor 4 continues sending packets
to Sensor 5, introducing a new state as depicted in
Figure 11(f).

Then, we can formalize our proposed Component-
based Firing as follows.

Definition 6 (Component-Based Firing).
Let WSNCom = {Com1, Com2, .., Comn} be a Component-
based Petri Net. Then, WSNCom is Component-based
Fired at a certain marking if all enabled transactions in
all components Comi are fired simultaneously, immediately
introducing a new marking.

Figure 12 is the corresponding reachability graph of
Figure 7 which is generated by Component-Based Firing.
Comparing to Figure 8, we can easily observe that
the approach of Component-based Firing significantly
helps to reduce almost infeasible paths on reachability
graph, which are paths that never occur in real situation.

S1 T1_rec

T1_int

T1_send S2 T2_rec

T2_int

T2_send

S3

T3_rec

T3_int
T3_send

S4 T4_rec

T4_int

T4_send S5

(a) Marking when Sensor 1 sends packets to Sensor 2 and
Sensor 3 simultaneously (feasible marking)

S1 T1_rec

T1_int

T1_send S2 T2_rec

T2_int

T2_send

S3

T3_rec

T3_int
T3_send

S4 T4_rec

T4_int

T4_send S5

(b) Marking when Sensor 2 sends packets to Sensor 4 (feasible
marking but not introducing new state)

S1 T1_rec

T1_int

T1_send S2 T2_rec

T2_int

T2_send

S3

T3_rec

T3_int
T3_send

S4 T4_rec

T4_int

T4_send S5

(c) Marking when Sensor 4 sends packets to Sensor 5 before
receiving packets from Sensor 3 (infeasible marking since
such a situation should not occur in a real WSN)

S1 T1_rec

T1_int

T1_send S2 T2_rec

T2_int

T2_send

S3

T3_rec

T3_int
T3_send

S4 T4_rec

T4_int

T4_send S5

(d) Marking when Sensor 3 sends packets to Sensor 4 (feasible
marking but not introducing new state)

S1 T1_rec

T1_int

T1_send S2 T2_rec

T2_int

T2_send

S3

T3_rec

T3_int
T3_send

S4 T4_rec

T4_int

T4_send S5

(e) Marking when Sensor 4 received packets from both Sen-
sor 2 and Sensor 3 (feasible marking introducing new state
since all of enabled transitions in each component have been
fired)

S1 T1_rec

T1_int

T1_send S2 T2_rec

T2_int

T2_send

S3

T3_rec

T3_int
T3_send

S4 T4_rec

T4_int

T4_send S5

(f) Marking when Sensor 4 sends packets to Sensor 5 after
receiving packets from both Sensor 2 and Sensor 3 (feasible
marking introducing new state)

Figure 11: Markings of Figure 9 in broadcast mode
(sensor abstraction).



82 REV Journal on Electronics and Communications, Vol. 5, No. 3–4, July–December, 2015

Figure 12: Generated reachability graph when using the
component-based firing rule.

5 Experiments

We conducted experiments to demonstrate the effi-
ciency of our Component-Based Firing in the context of
congestion verification on a PN-modeled WSN. Our
Component-based approach can significantly reduce
the state space of congestion verification. In our ex-
periments, the numbers of sensors range from 5 to 20.
The parameters of these sensors are set to enforce the
congestion.

We also verify another property deadlock-free of the
modeled WSN. For congestion checking, we separately
verify the properties of chk-sensor-congestion and chk-
channel-congestion (checking whether the congestion oc-
curs in Sensors or Channel or not).

Experimental results of Component-Based Firing are
shown in Table I. In this experiment, we compare our
firing approach to traditional firing on the same models.
The result of traditional firing is extracted from the
previous study [4]. We set Timeout as 5 hours if the
system cannot terminate properly after this duration.

The results show that in most cases, the Component-
Based Firing approach requires less visited states, as
compared to the Traditional Firing one. It reduces the
visited states from 24,476,230 to 1,223,020 (20 times) in

the best case, and from 398 to 270 (1.5 times) in the
worst case. Moreover, our approach can still manage
very large models that cannot be handled by Traditional
Firing approach (indicated by Timeout in Table I).

6 Related Works

When a system is modeled by a Petri net, its properties
can be verified using model checking techniques. How-
ever, the biggest disadvantage of this approach is the
infamous state space explosion problem. As discussed,
the two major approaches of reducing the size of model
and reducing directly the states of reachability graph are
proposed in literature to handle this problem.

6.1 Reduction of the model size

There are two usual ways to reduce the size of model
including decomposition and PN abstraction, which is
also considered as compositional verification.

In the first approach, the architecture of the original
system can be divided into sub-systems. The strategy
of verification for this system is thus based on sub-
system verification [13]. The general properties of the
system can be proved based on the properties of its sub-
systems. The verification process includes the following
steps: verification of sub-systems, analysis on the rela-
tionship of sub-systems, combining the local properties
of all sub-systems to global properties for the whole
system.

Modular verification (e.g. [14]) is an efficient method
of decomposition based on the design of the system.
Firstly, the state space is decomposed into two parts:
sub-systems and a graph to synchronize these sub-
systems. A decomposition approach [15] divides the
system into concurrent sub-systems. Each sub-system
has its own state space. The full state space of the
system is then established by the state spaces of the sub-
systems or the sub-systems’ actions only. This proposal
is suitable for synchronous systems.

Furthermore, abstraction techniques or PN abstraction
have recently been proposed. Basically, abstraction re-
duces a PN model into a new one which has a smaller
size in terms of number of places and transitions.
As a trade-off, the abstracted model cannot preserve
all properties from the original one, but only some
needed properties [16–18]. Thus, we cannot ensure the
soundness nor completeness when verifying the ab-
stracted model against certain properties. For instance,
in the work of [19], if the abstracted model satisfies
a property e.g. deadlock, the original model satisfies
it too, but the converse is not true. Other proposals
[20, 21] use counter-examples as a key for composi-
tional verification of a system combined from multiple
modules. If a counter-example is found in an abstracted
module, this counter-example will be verified again on
the corresponding concrete module. Otherwise, i.e. no
counter-example found on any abstracted module for a
given property, the real system does indeed satisfy the
property.



K. Le et al.: State Space Reduction on Wireless Sensor Networks Verification Using Component-Based Petri Net Approach 83

Table I: Experimental resultsTABLE I: Experimental results

Number of
Sensors

Number of
Packets

Buffer Model Property Traditional Firing Component-Based Firing

Visited State Result Visited State Result

5 60 70

No Abstraction
deadlockfree 663,836 Valid 120,326 Valid

chk-channel-congestion 2,546,821 Not valid 86,321 Not valid
chk-sensor-congestion 2,546,779 Not valid 87,360 Not valid

Channels Abstraction deadlockfree 18,304 Valid 7,413 Valid
chk-sensor-congestion 48,131 Not valid 21,031 Not valid

Sensors Abstraction deadlockfree 21,504 Valid 12,365 Valid
chk-channel-congestion 81,856 Not valid 65,230 Not valid

10 60 70

No Abstraction
deadlockfree 1,247,938 Valid 93,120 Valid

chk-channel-congestion 394,019 Valid 289,631 Valid
chk-sensor-congestion 21,203 Valid 10,136 Valid

Channels Abstraction deadlockfree 158,000 Valid 8,930 Valid
chk-sensor-congestion 150,423 Valid 95,320 Valid

Sensors Abstraction deadlockfree 14,855 Valid 9,563 Valid
chk-channel-congestion 60,413 Valid 60,231 Valid

15 60 70

No Abstraction
deadlockfree Timeout - Timeout -

chk-channel-congestion Timeout - 856,232 Not valid
chk-sensor-congestion 398 Valid 270 Valid

Channels Abstraction deadlockfree Timeout - 4,856,301 Valid
chk-sensor-congestion 29,150 Not valid 18,652 Valid

Sensors Abstraction deadlockfree Timeout - Timeout -
chk-channel-congestion Timeout - 522,014 Not valid

20 60 70

No Abstraction
deadlockfree Timeout - 30,125,693 Not valid

chk-channel-congestion Timeout - 98,563 Valid
chk-sensor-congestion 398 Valid 270 Valid

Channels Abstraction deadlockfree 74,465 Valid 65,320 Valid
chk-sensor-congestion 24,476,230 Valid 1,223,020 Valid

Sensors Abstraction deadlockfree 501,452 Valid 403,560 Valid
chk-channel-congestion 1,412,365 Valid 7,412,865 Valid

6.2 Direct reduction of the reachability graph states

Reducing directly the states of reachability graph
were proposed to handle state space reduction such as
partial order reduction (e.g. [22, 23]), symmetries use
(e.g. [24, 25]) or unfolding methods (e.g. [26]).

Partial order reduction methods exploit this redun-
dancy and visit only a subset of the reachable states.
The main idea of this concept is replacing the full
transitions system by a small subset one. Paths which
have the same actions (but different searching order) of
the visited others are skipped. So, the new reachability
graph will be smaller than the old one.

Basically, the idea of exploiting symmetry is as fol-
lows. Given a model including States, Transitions and
their Labels, a symmetry group G is a group which
partitions the state set S into equivalence classes called
orbits. A new quotient model MG is constructed that
contains one or more representative from each orbit.
The state space of the quotient model will, in general,
be much smaller than the original state space S. This
makes it possible to verify much larger structures.

In recent years, there has been a growing interest in
use of unfolding approaches. The unfolding semantics
is a branching partial order semantics which repre-
sents in a single structure for all the possible events
in computations. Each branch represents a concurrent
execution of the net. The unfolding provides an efficient
representation of the state space of the system, not only
taking advantage of a partial order representation of
concurrency, but also keeping together different com-
putations in its branching structure until a conflict is
reached.

7 Conclusion

This paper presents an efficient way of reducing state
space on WSN using Petri nets. Especially, we propose
Component-based Firing, a mechanism which allows syn-
chronously firing components on model in order to
decrease the number of redundant firing transitions in
each component. It thus significantly reduces the state
space generated for congestion verification, as shown
in our experimental results, which aimed at detection
of congestion in a PN-modeled WSN.

Acknowledgment

This research is funded by Ho Chi Minh University of
Technology under grant number TNCS-2015-KHMT-38.

References

[1] J. Billington, G. R. Wheeler, and M. C. Wilbur-Ham,
“PROTEAN: A high-level petri net tool for the specifica-
tion and verification of communication protocols,” IEEE
Transactions on Software Engineering, vol. 14, no. 3, pp.
301–316, 1988.

[2] M. Reid and W. M. Zuberek, “Timed petri net models of
ATM lans,” in Application of Petri Nets to Communication
Networks, Advances in Petri Nets, 1999, pp. 150–175.

[3] D. A. Zaitsev, “Switched LAN simulation by colored
petri nets,” Mathematics and Computers in Simulation,
vol. 65, no. 3, pp. 245–249, 2004.

[4] K. Le, T. Bui, T. Quan, L. Petrucci, and É. André,
“Component-based abstraction of petri net models: An
application for congestion verification of wireless sensor
networks,” in Proceedings of the Sixth International Sym-
posium on Information and Communication Technology, Hue
City, Vietnam, Dec. 3-4, 2015, p. 51.

[5] C. Baier and J. Katoen, Principles of model checking. MIT
Press, 2008.



84 REV Journal on Electronics and Communications, Vol. 5, No. 3–4, July–December, 2015

[6] E. M. Clarke, S. Jha, and W. R. Marrero, “Verifying
security protocols with brutus,” ACM Transactions on
Software Engineering and Methodology, vol. 9, no. 4, pp.
443–487, 2000.

[7] ——, “Efficient verification of security protocols using
partial-order reductions,” International Journal on Software
Tools for Technology Transfer, vol. 4, no. 2, pp. 173–188,
2003.

[8] C. A. Petri, “Kommunikation mit automaten,” Ph.D. dis-
sertation, Darmstadt University of Technology, Germany,
1962.

[9] T. Murata, “Petri nets: Properties, analysis and applica-
tions,” Proceedings of the IEEE, vol. 77, no. 4, pp. 541–580,
1989.

[10] K. Jensen and L. M. Kristensen, Coloured Petri Nets -
Modelling and Validation of Concurrent Systems. Springer,
2009.

[11] C. Wan, S. B. Eisenman, and A. T. Campbell, “CODA:
congestion detection and avoidance in sensor networks,”
in Proceedings of the 1st International Conference on Embed-
ded Networked Sensor Systems (SenSys 2003), Los Angeles,
California, USA, Nov. 2003, pp. 266–279.

[12] B. Hull, K. Jamieson, and H. Balakrishnan, “Mitigating
congestion in wireless sensor networks,” in Proceedings
of the 2nd International Conference on Embedded Networked
Sensor Systems (SenSys 2004), Baltimore, MD, USA, Nov.
2004, pp. 134–147.

[13] E. M. Clarke, D. E. Long, and K. L. McMillan, “Com-
positional model checking,” in Proceedings of the Fourth
Annual Symposium on Logic in Computer Science (LICS ’89),
1989, pp. 353–362.

[14] C. Lakos and L. Petrucci, “Modular analysis of systems
composed of semiautonomous subsystems,” in Proceed-
ings of the Fourth International Conference on Application
of Concurrency to System Design (ACSD 2004), Hamilton,
Canada, Jun. 2004, pp. 185–194.

[15] A. Valmari, “Compositionality in state space verification
methods,” in Application and Theory of Petri Nets (APN
1996), 1996, pp. 29–56.

[16] S. Haddad, J. Ilié, and K. Klai, “Design and evaluation
of a symbolic and abstraction-based model checker,” in
2nd International Symposium on Automated Technology for
Verification and Analysis (ATVA 2004), 2004, pp. 196–210.

[17] K. Klai and D. Poitrenaud, “MC-SOG: an LTL model
checker based on symbolic observation graphs,” in 29th
International Conference on Applications and Theory of Petri
Nets (PETRI NETS 2008), 2008, pp. 288–306.

[18] A. Duret-Lutz, K. Klai, D. Poitrenaud, and Y. Thierry-
Mieg, “Self-loop aggregation product - A new hybrid
approach to on-the-fly LTL model checking,” in 9th
International Symposium on Automated Technology for Ver-
ification and Analysis (ATVA 2011), 2011, pp. 336–350.

[19] K. Klai, S. Haddad, and J. Ilié, “Modular verification of
petri nets properties: A structure-based approach,” in
Formal Techniques for Networked and Distributed Systems
(FORTE 2005), 2005, pp. 189–203.

[20] E. M. Clarke, O. Grumberg, S. Jha, Y. Lu, and
H. Veith, “Counterexample-guided abstraction refine-
ment for symbolic model checking,” Journal of the ACM
(JACM), vol. 50, no. 5, pp. 752–794, 2003.

[21] É. André, H. Ochi, K. Klai, and L. Petrucci, “A
counterexample-based incremental and modular verifi-
cation approach,” in 17th Monterey Workshop on Develop-
ment, Operation and Management of Large-Scale Complex
IT Systems, ser. Lecture Notes in Computer Science,
R. Calinescu and D. Garlan, Eds., vol. 7539. Oxford,
England: Springer, Aug. 2012, pp. 283–302.

[22] D. Peled, “All from one, one for all: on model checking
using representatives,” in Proceedings of the 5th Interna-
tional Conference on Computer Aided Verification (CAV ’93),
Elounda, Greece, Jun. 28 - Jul. 1 1993, pp. 409–423.

[23] P. Godefroid, Partial-Order Methods for the Verifica-

tion of Concurrent Systems - An Approach to the State-
Explosion Problem, ser. Lecture Notes in Computer Sci-
ence. Springer, 1996, vol. 1032.

[24] E. A. Emerson and A. P. Sistla, “Symmetry and model
checking,” Formal Methods in System Design, vol. 9, no.
1/2, pp. 105–131, 1996.

[25] E. M. Clarke, S. Jha, R. Enders, and T. Filkorn, “Exploit-
ing symmetry in temporal logic model checking,” Formal
Methods in System Design, vol. 9, no. 1/2, pp. 77–104,
1996.

[26] J. Esparza, “Model checking using net unfoldings,” Sci-
ence of Computer Programming, vol. 23, no. 2-3, pp. 151–
195, 1994.

Ms. Khanh Le is the Lecturer in the Faculty
Information Technology of Saigon University,
Vietnam. She received the Bachelor degree in
Mathematics and Computing from Ho Chi
Minh City University of Natural Science in
2005 and received Master degree in Computer
Networking from Paris VI University in 2009.
Now, she is a PhD student of Ho Chi Minh
City University of Technology. Her current
research in Quality of services for wireless
sensor networks, System modeling and veri-

fication.

Dr. Thang Bui is currently a Lecturer in
Faculty of Computer Science and Engineer-
ing, Ho Chi Minh City University of Tech-
nology, Vietnam, and a member of the Lab-
oratory for Systems Analysis and VErification
(SAVE), which aims at developing automated
techniques for analyzing and reasoning on
computer-based systems. His research focuses
on Software Verification, particularly Model
checking, which is to model the real world
application and to check for any violation

of desired properties. He holds a Bachelor degree in Computer
Engineering from Ho Chi Minh City University of Technology in
1997, a Master degree in Computer Science and Engineering from the
Asian Institute of Technology, Thailand, in 2001, and a PhD degree
in Computer Science and Engineering from the University of New
South Wales, Australia, in 2010.

Dr. Tho Quan is an Associate Professor in
the Faculty of Computer Science and En-
gineering, Ho Chi Minh City University of
Technology, Vietnam. He received his B.Eng.
degree in Information Technology from Ho
Chi Minh City University of Technology in
1998 and received Ph.D degree from Nanyang
Technological University, Singapore, in 2006.
His current research interests include formal
methods, program analysis/verification, the
Semantic Web, machine learning/data mining

and intelligent systems. Currently, he heads the Department of Soft-
ware Engineering of the Faculty. He is also serving as the Chair of
Computer Science Program (undergraduate level).


