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Abstract– The paper deals with the problem of tracking control for a class of nonlinear systems in presence of the
disturbances. The developed formation for the tracking control is taken into account as an adaptive neural network. The set
of controller’s parameter, which is a satisfy Hurwitz polynomial, is then updated by adaptive laws via a model reference
system. In addition, the unknown nonlinear functions are estimated by radial basis functions neural network. The adaptive
updated law based on radial basis functions neural network and a feed-forward correction is proposed to estimate both
estimation errors of nonlinear functions and external disturbances, which is called lumped disturbances. The feed-forward
correction term is calculated by the algebraic equation regarding the parameters of controller and the radial basis function.
Moreover, this estimator (using estimating the lumped disturbance) is also used both in class of SISO nonlinear and MIMO
nonlinear system. Thanks to Lyapunov’s theory, asymptotic stability is established with the tracking errors converging to a
neighborhood of the origin. Finally, two examples of coupled tank liquid system and an active magnetic bearing system,
are presented to illustrate the our proposed methods.
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Nonlinear System, Liquid Level Systtem, Active Magnetic Bearing System.

1 Introduction

TRACKING control for uncertain nonlinear systems
with unknown disturbances is a challenging pro-

blem [1] and [2]. To achieve good tracking under un-
certainties, one often need to combine several methods
in the control design such as adaption, feedforward,
and high-gain, this paper is no exception. With the
nonlinear system [1, 2] and [3] they use the exact feed-
back linearization approach to define a control law with
assumption that the modeled object is clearly known
and states are measured and available for feedback. If
we do not know exactly parameters of plant, the linear
parameterization of unknown dynamics poses serious
obstacles in adopting adaptive control algorithms in
practical applications, because it is difficult to fix the
structure of the unknown nonlinearities. This fact has
been the motivating factor behind the interest in on-line
function approximators used in adaptive control which
are artificial neural network and fuzzy logic system.

The nonlinear system with unknown input noise [2]
and [4] has an uncertain parameter vector or unknown
functions. Four trends will appear, the first trend con-
sists in introducing a direct adaptive fuzzy control
combined with sliding mode control [5] and [6] based
on Lyapunov theory. The second trend is carried out
in controller design based on universal approximation
[7], [8] and [9], the indirect adaptive fuzzy control
(IAFC) combined with sliding mode control (SMC) has

attracted much attention. The combining the two achie-
ving more superior performances such as overcoming
some limitations of the traditional SMC. However, SMC
suffers from a well-known problem chattering due to
the high gain and high-speed switching control. The
undesirable chattering may excite previously unmodel-
led system dynamics and damage actuators, resulting
in unpredictable stability. The third trend, using ISS
stabilization in [10] and [11] combined principles of
certainty equivalence, a tracking errors smoothly con-
verge to the arbitrarily sufficient small neighborhood
of the origin. The last trend, employing an H∞ con-
trol with fuzzy approximation [12] and [13], consists
in synthesizing an adaptation law, and a control law
calculated from Riccati equation to attenuate the effect
of both the approximation error and external disturban-
ces. But this method requires the determination of the
weighting matrix by the designer and find a trade off
between the initial values of the control signal and the
attenuation level.

In this work, artificial neural network is employed.
From the point of view of possible drawbacks compa-
red to the MPL (Multilayer Perceptron) which adjust
only the connection weight matrix. Meanwhile, RBF
(Radial Basis Function) neural networks [2] are cha-
racterized by two sets of adjustable parameters: the
centers of the radial basis and the connection matrix.
however, the RBF’s output depends linearly on the
connection weights and thus the training becomes a
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linear optimization problem. Therefore, in this paper
we consider RBF in designing the adaptive controller.

Furthermore, instead of using sliding mode control
as [13] and [14] we will consider the unknown input
noise and error structure which is generated by general
approximators can be lumped into a disturbance term.
The lumped disturbance signal is estimated based on
a RBF neural network combined with a feed-forward
correction term. In addition, the parameters of con-
trollers in [5], [9] and [15] are chosen such as they
are coefficients of hurwitz polynomial that mean these
controllers ensure only the stable closed loop system.
On the other hand, these papers do not focus on the
performance of closed loop system such as: the settling
time, overshoot and error the output and reference
signal. Thus, in this paper we concentrate to these
problems.

The remainder of this paper is organized as follows.
In Section 2, we introduce the optimal tracking cont-
rol with based on adaptive RBF neural network and
adaptive parameters of controller. Section 3 then provi-
des the new adaptive RBF neural network combined
with disturbance estimation, and extension adaptive
neural network combined with disturbance estimation
for MIMO nonlinear system could be represented in
Section 4. Simulation results are given in Section 5 and
Section 6 concludes this work.

2 Optimal tracking control based on

adaptive rbf neural network (Tc-rbf)

As mentioned above, the RBF neural network can be
considered as a two layers network with one hidden
layer. The output depends linearly on the connection
weights, the training is thus a linear optimization pro-
blem [2].

More explicitly, the RBF neural network performs the
transformation: b : Rn → R with

b(x) = ∑m
j=1 Ξj(x)Θj = ΘTΞ(x), (1)

in which Ξj(x) = φ(
∥∥x− cj

∥∥
2), x is the input vector, φ

is a nonlinear function, called radial basis function, Θj
are connection weights between the hidden layer and
the output layer, cj are centers of the basis function, m is
the number of basis function. The most common basis
function is the Gaussian function

φ(x) = exp
(
−r2

2σ2

)
, (2)

where r =
∥∥x− cj

∥∥
2, σ is an associated constant to the

function φ(x) and represents the width of Gaussian
function. Although the RBF neural network is usually
considered linear parameterized, by adjusting the cen-
ters and the widths this type of neural network struc-
ture becomes nonlinearly parameterized. In this work,
the centers of the basis function are chosen by constant
and the connection weights are online adjusted.

2.1 Tracking control based on RBF neural network
Consider the SISO nonlinear system with disturbance

d(x, t) given as:{
y(n) = f (x) + h(x)u + d(x, t); ‖d(x, t)‖ ≤ ρ
x = (x1 ... xn)T ∈ Rn; u ∈ Rn×m; f (x); h(x) ∈ C∞,

(3)

where f (x) ∈ Rn and h(x) ∈ Rn are supposed to be
unknown (uncertain) but with a limited bound, u ∈ Rn

is the input, y ∈ Rn is the outputs of the system, x is
the state vector, which is assumed to be available for
measurement and d ∈ Rn represents the unknown but
bounded and smooth external disturbances (load, white
noise...).
Assumption 1:

‖d(x, t)‖ ≤ ρ and d(x, t) ∈ C∞ (4)

The objective is to design a feedback control law to
drive the system output y tracking a reference output
ym. With the assumption that all the state of the system
are measurable and available for feedback.

In case of d(x, t) = 0, the mentioned control target
can be met by applying the state feedback controller:

uc = h−1(x)(− f (x)+y(n)m +
n−1

∑
i=1

kie(i)) ; e(t) = ym − y

(5)
where ki, i = 1, 2, ..n − 1 are coefficients of hurwitz
polynomial

p(s) = k1 + k2s + ... + kn−1sn−2 + sn−1 (6)

It is not difficult to prove that the closed loop system
with the control law (5) to be stable and the output
error asymptotically approaches to zero.

Assuming that the functions f (x) and h(x) describing
the system dynamics are unknown; the ideal control
law cannot be implemented. Thus, f (x) and h(x) are
approximated by a universal approximator of the fol-
lowing form:

f̂ (x) = ΘT
f Ξ f (x); ĥ(x) = ΘT

h Ξh(x) (7)

where Ξ f (x), Ξh(x) are the basic function vectors and
ΘT

f , ΘT
g the parameters vectors, respectively.

The parameter vector ΘT is updated online so
that the approximation errors between f (x), h(x) and
_

f (x),
_

h(x) are minimal. Define the optimal parameters
vector as:

Θ∗f = arg min
Θ f

(sup
x
|ΘT

f Ξ f (x)− f (x))

Θ∗h = arg min
Θh

(sup
x
|ΘT

h Ξh(x)− h(x))
(8)

if Θ f → Θ∗f ; Θh → Θ∗h then f̂ (x) → f (x), ĥ(x) → h(x)
that means the RBF neural network (8) can approximate
smooth nonlinear functions with the arbitrary small
error. In general cases, f (x), h(x) are not identical to
f (x), h(x). Let δ f (x), δh(x) are the structure error:

f (x) = Θ∗Tf Ξ f (x) + δ f (x);
h(x) = Θ∗Th Ξh(x) + δh(x)

(9)
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2.2 Optimal Tracking Control

With the estimated function f (x) and h(x) in (7).
The closed loop system including state feedback con-
troller (21) and uncertain nonlinear system with distur-
bance (3) can be expressed

en = −k1e− k2 ė− k3 ë− ...− kn−1en−1−
−δ f (x)− δh(x)u(t) (10)

in which, the parameters k1; k2; ...; kn−1 of the state feed-
back controller are chosen in (6). They only guarantee
the closed loop system stable but, the tracking quality
of closed loop is not considered.

On the other hand, it is clear that the performance of
closed loop system such as the settling time, overshoot
and error between the output signal and reference
depending on the parameters k1, k2, .., kn. For example,
the roots of the second order linear ordinary differential
equation with n = 2; ∆(x) = δ f (x) + δh(x)u(t)

e0(t) = k1 exp(0.5t
√
−k2

2 + 4k1 + k2)+

+k2 exp(0.5t
√

k2
2 + 4k1

e(t) = e0(t)− k−1
1 sup

x
|∆(x)|

(11)

Therefore, to improve tracking performance of system,
(the error between reference trajectory and output trajectory,
the settling time), we need to find the optimal parameters
or the adaptive parameters. In this paper, we propose
an adaptive law for the parameters k1; k2; ...; kn−1.

The controller (5) can be rewritten as

uc = ĥ−1(x)(− f̂ (x) + y(n)m + ΘT
k e) (12)

where ΘT
k = (k1, k2, ..., kn−1); e = (e ė, ..., e(n−1))T .

The ΘT
k will be updated by the adaptive law based

on reference system in theorem 1. Assumption 2: The
function h(x), ĥ(x) are bounded

0 < hlo ≤ h(x), ĥ(x) ≤ hup < ∞ (13)

Theorem 1. Consider the nonlinear system (3) with the
assumptions (4) and (13). If we choose the controller (12) in
which the ΘT

h , ΘT
f updated by the adaptive law

Θ̇ f = −Q−1
f Ξ f (x)ε; Θ̇h = −Q−1

h Ξh(x)εuc

and the parameters of controller are updated by

k1(t) = k10 +
1

qk11

∫ t
0 (ym − y)εdt

k2(t) = k20 +
1

qk22

∫ t
0 (ẏm − ẏ)εdt

...
kn−1(t) = k(n−1)0 + an−1

∫ t
0 (y(n−1)

m − y(n−1))εdt

(14)

where an−1 = 1
qk(n−1)(n−1)

. Then we can have lim
t→∞

e(t)→ 0
and the closed loop system is stable.

Proof: The nth derivative of the output error bet-
ween output and reference is expressed:

y(n) = −( f̂ (x)− f (x))− (ĥ(x)− h(x))uc + y(n)m + ΘT
k e

ẋ(n−1)m − ẋn−1 = (ΘT
f Ξ f (x)−Θ∗Tf Ξ f (x)− δ f (x))−

ΘT
k e + (ΘT

h Ξh(x)−Θ∗Th Ξh(x)− δh(x))uc
ε̇ = (ΘT

f −Θ∗Tf )Ξ f (x) + (ΘT
h −Θ∗Th )Ξh(x)uc−

−ΘT
k e− [δ f (x) + δh(x)uc]

ε̇ = Θ̃T
f Ξ f (x) + Θ̃T

h Ξh(x)uc − ∆(x)−ΘT
k e

Θ̃T
f = (ΘT

f −Θ∗Tf ); Θ̃T
h = (ΘT

h −Θ∗Th );
(15)

Consider the Lyapunov candidate function:

V = 1
2 ε2 + 1

2 Θ̃T
f Q f Θ̃T

f +
1
2 Θ̃T

h QhΘ̃T
h + 1

2 ΘT
k QkΘk;

Q f > 0; Qg > 0; Qk > 0

where Qi ∈ Rd×d(d = dim Θi) is a positive definite
matrix. Take the derivative of V with respect to time
and notice that Θ̃i = Θ̇i, we have:

V̇ = εε̇ + Θ̃T
f Q f Θ̇ f + Θ̃T

h QhΘ̇h + ΘT
k QkΘ̇k

V̇ = Θ̃T
f (εΞ f (x) + Q f Θ̇ f ) + Θ̃T

h (εΞh(x)uc + QhΘ̇h)+

+ΘT
k (QkΘ̇k − εe)− ε∆(x)

Chose the parameter update law to cancel the parame-
ter error as follow:

εΞ f (x) + Q f Θ̇ f = 0⇒ Θ̇ f = −Q−1
f Ξ f (x)ε

εΞh(x)uc + QhΘ̇h = 0⇒ Θ̇h = −Q−1
h Ξh(x)εuc

(16)

QkΘ̇k − εe = 0⇒ Θ̇k = Q−1
k εe (17)

where a weighting matrix Qk is given as:

Qk =

 qk11 · · · 0
...

. . .
...

0 · · · qk(n−1)(n−1)

 ; Θ̇k = Q−1
k εe (18)

k1(t) = k1(0) + 1
qk11

∫
(ym − y)εdt

...
kn−1(t) = kn−1(0) + 1

qk(n−1)(n−1)

∫
(y(n−1)

m − y(n−1))εdt

and k1(0), k2(0), ..., kn−1(0) are chosen in (6) to guaran-
tee the stability of the closed loop system. Finally, we
have:

V̇ = −ε∆(x) ≤ − |ε∆(x)| ≤ 0 (19)

Since V is quadratic function and V̇ ≤ 0, the control
system is proven to be stable.

Remark 1. Following (11),when there is an error structures,
then k−1

1 sup
x,t=td

|∆(x, t)| will be reduced dramatically by au-

tomatic adjusted parameters k1 this means that the adaptive
parameters of controller contribute a decrease affection of
error structures.
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3 New adaptive rbf neural network and

disturbance estimation (na-rbf-de)

In this section, we consider an affection of disturbance
on system d(x, t) 6= 0. The nonlinear system (3) can be
expressed:

y(n) = Θ∗TF ΞF(x) + δF(x)+
+[Θ∗TH ΞH(x) + δH(x)]u + d(x, t)
= Θ∗TF ΞF(x) + Θ∗TH ΞH(x)u + η(x, t)

η(x, t) = d(x, t) + δF(x) + δH(x)uc

(20)

in which the η(x, t) is called lumped disturbance.
If η(x, t) 6= 0, the controller (12) could only drive

the system output to a neighborhood of the desired
trajectory. We will introduce another control law com-
bined disturbance estimation with adaptive RBF neural
network. In which, η(x, t) is estimated by the adaptive
RBF neural network η̂(x, t) = ΘT

η Ξη(x). The state
feedback controller is selected as

u = uc + ud
ud = −ĥ−1(x)η̂(x, t)
uc = ĥ−1(x)(− f̂ (x) + y(n)m + Θke)

(21)

Theorem 2. Consider the nonlinear system (3) with the
assumptions (4) and (13). If we choose the controller (21) in
which the ΘT

h , ΘT
f updated by the adaptive law

Θ̇ f = −Q−1
f Ξ f (x)ε; Θ̇h = −Q−1

h Ξh(x)εuc

the parametters of controller are updated

k1(t) = k10 +
1

qk11

∫ t
0 (ym − y)εdt

k2(t) = k20 +
1

qk22

∫ t
0 (ẏm − ẏ)εdt

...
kn−1(t) = k(n−1)0 + an−1

∫ t
0 (y(n−1)

m − y(n−1))εdt

(22)

and the disturbance estimation is obtained form

η̂(x, t) = −
∫ t

0
ΞT

η (x)(Q−1
η )TεdtΞη(x)− γe(t) (23)

where γ is root of γAd + γBdγ + ΞT
η (x)Q−1

η Ξη(x)ad = 0.
Then we can have lim

t→∞
e(t)→ 0, lim

t→∞
(η̂(x, t)− η(x, t))→

0 and the closed loop system is stable.

Proof: There are two parts in our proof. First,
the stability of closed loop system will be given by
Lyapunov function. After that, an explaining to a feed-
forward correction Γ is obtained by (23) and a proof of
convergence of estimated disturbance error. First of all,

a dynamic of error will be expressed

y(n) = f (x) + h(x)(uc + ud) + d(x, t)
= −( f̂ (x)− f (x))− (ĥ(x)− h(x))uc
+ f̂ (x) + ĥ(x)uc + h(x)ud + d(x, t)

ε̇ =
(

ΘT
f Ξ f (x)−Θ∗Tf Ξ f (x)− δ f (x)

)
− h(x)ud+

+
(
ΘT

h Ξh(x)−Θ∗Th Ξh(x)− δh(x)
)

uc −ΘT
k e− d(x, t)

ε̇ =
(

ΘT
f −Θ∗Tf

)
Ξ f (x) +

(
ΘT

h −Θ∗Th
)

Ξh(x)uc−
−[δ f (x) + δh(x)uc + d(x, t)]− h(x)ud −ΘT

k e
= Θ̃T

f Ξ f (x) + Θ̃T
h Ξh(x)uc − η(x, t)− h(x)ud −ΘT

k e
= Θ̃T

f Ξ f (x) + Θ̃T
h Ξh(x)uc + (η̂(x, t)− η(x, t))−

−η̂(x, t)− h(x)ud −ΘT
k e

= Θ̃T
f Ξ f (x) + Θ̃T

h Ξh(x)uc + Θ̃T
η Ξη(x)− η̂(x, t)−

−h(x)ud −ΘT
k e

in which Θ̃T
f =

(
ΘT

f −Θ∗Tf

)
; Θ̃T

h = (ΘT
h −Θ∗Th ); Θ̃T

η =

(ΘT
η −Θ∗Tη )

Consider the Lyapunov candidate function:

V = 1
2 ε2 + 1

2 Θ̃ f Q f Θ̃T
f +

1
2 Θ̃hQhΘ̃T

h +

+ 1
2 Θ̃ηQηΘ̃T

η + 1
2 Θ̃kQkΘ̃T

k

Take the derivative of V with respect to time and notice
that ˙̃Θi = Θ̇i, we have:

V̇ = εε̇ + Θ̃T
f Q f Θ̇ f + Θ̃T

h QhΘ̇h + Θ̃T
η QηΘ̇η + Θ̃T

k QkΘ̇k

V̇ = ε(Θ̃T
f Ξ f (x) + Θ̃T

h Ξh(x)uc + Θ̃T
η Ξη(x)− η̂(x, t)−

−h(x)ud −ΘT
k e) + Θ̃T

f Q f Θ̇ f+

+Θ̃T
h QhΘ̇h + Θ̃T

η QηΘ̇η + Θ̃T
k QkΘ̇k

= Θ̃T
f (εΞ f (x) + Q f Θ̇ f ) + Θ̃T

h (εΞh(x)uc + QhΘ̇h)+

+Θ̃T
n (εΞn(x) + QnΘ̇n) + ΘT

k (QkΘ̇k − εe)
−εη̂(x, t)− εh(x)ud

(24)
Choose the parameter update law to cancel the para-
meter error as follow

εΞ f (x) + Q f Θ̇ f = 0⇒ Θ̇ f = −Q−1
f Ξ f (x)ε

εΞh(x)uc + QhΘ̇h = 0⇒ Θ̇h = −Q−1
h Ξh(x)εuc

(25)

QkΘ̇k − εe = 0⇒ Θ̇k = −Q−1
k εe (26)

εΞη(x) + QηΘ̇η = 0⇒ Θ̇η = −Q−1
η Ξη(x)ε (27)

after that we have:

V̇ = −εη̂(x, t)− εh(x)ud (28)

Substitute ud = −ĥ−1(x)η̂(x, t) and assumption 2 for
(28)

V̇ = εη̂(x, t)
(

h(x)
hup
− 1
)

V̇ ≤ |ε|
(

h(x)
hup
− 1
)
‖η̂(x, t)‖ ≤ 0

(29)

Since V is quadratic function and V̇ ≤ 0, the control
system is proven to be stable. It is clear that V ∈ L∞,
which implies ε ∈ L∞ and Θ̃i ∈ L∞. from (30) we
have ė ∈ L∞. Consequently, from the definition of
and (6), we have e(j) ∈ L∞, j = 1, .., r − 1. Also, since∫ t

0 V̇dt = V(t)−V(0) < ∞ we have e ∈ L2. Since e ∈ L2,
we have ė ∈ L∞. From the facts that ė ∈ L∞ and
e ∈ L∞ ∩ L2 according to Barbalat’s Lemma [16], we
have lim

t→∞
e(t)→ 0.
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With adaptive law (25) and (26), the derivative of
surface error can be expressed

e(n) +
n−1
∑

i=1
kie(i) = −η(x, t) + η̂(x, t) (30)

then, we have

e(n) = −k1e− k2 ė− ...− kn−1e(n−1) + (η̂(x, t)− η(x, t))
ė = Ade + Bdeη ; eη = η̂(x, t)− η(x, t)

Ad =


0 1 0 · · · 0
0 0 1 · · · 0
...

...
...

. . .
...

0 0 0 0 1
−k1 −k2 −k3 · · · −kn−1



e =


e
ė
...

e(n−2)

e(n−1)

 ; Bd =


0
0
...
0
1


(31)

from (27), we assume the disturbance estimation as

−ΞT
η (x)Q−1

η Ξη(x)s(e) = ˙̂
0η(x, t) = ėη0 (32)

if the disturbances are constant, η̂0(x, t) becomes true.
In case of variable disturbance, the disturbances esti-
mation are updated following the equation:

η̂(x, t) = η̂0(x, t)− γe(t); γ = (γ1, γ2, ..., γn) (33)

where η̂0(x, t) is pre-correction, and η̂(x, t) is the cor-
rected estimation for time-varying disturbances with
correction gain γ. from ė = Ade + Bdeη , e(t) is genera-
ted from a linear dynamics excited by eη0(t). Intuitively,
we can assume that

eη0(t) = γ(t)e(t) (34)

where γ is potentially time varying. Take the derivative
of (34), we have

ėη0(t) = γ̇(t)e(t) + γ(t)ė(t)
= γ̇(t)e(t) + γ(t)(Ade(t) + Bdeη)
= γ̇(t)e(t) + γ(t)Ade(t) + γ(t)Bdγ(t)e(t)

(35)

In addition, ėη0 = −ΞT
η (x)Q−1

η Ξη(x)ade, where ad be
the last column of Ad.

−ΞT
η (x)Q−1

η Ξη(x)ade =
γ̇(t)e + γ(t)Ade + γ(t)Bdγ(t)e(t)
γ̇(t) = −[γ(t)Ad + γ(t)Bdγ(t) + ΞT

η (x)Q−1
η Ξη(x)ad]

The steady state can be used

γAd + γBdγ + ΞT
η (x)Q−1

η Ξη(x)ad = 0 (36)

where Ξη(x); x = (y, ẏ, ..y(n)). In steady state,Ξη(x) =
(1, 0, .., 0). from ė = Ade + Bdeη , e(t) and ė ∈ L∞ we
have lim

t→∞
Bdeη(t) → 0. If Bd has full column rank, we

can conclude that lim
t→∞

eη(t)→ 0.

Remark 2. In case of the disturbance d(x, t) is unbounded.
this means that it dose not satisfy the assumption 1 (4), we
will be completely converted into form assumption 1 such

as sup
0≤τ≤t

∣∣∣_d(x, τ)− d(x, τ)
∣∣∣ ≤ ρ by employing estimated

algorithm based on adaptive RBF neural network as present.

Remark 3. In the equation (36), the Ad matrix and ad
vector depend on the adaptive gains ΘT

k = (k1, k2, ..., kn−1).
Consequently, calculating the feed-forward correction term
γ is corrected online, then the performance of estimation
disturbance error will be improved. There is an algorithm
to calculate γ
Input:

- Initial value k10, k20, ..., k(n−1)0 which satisfied the
equation (6).
- Compute k1, k2, ..., k(n−1) following (14).
- Setup Bd, Ξη(x) = (1, 0, .., 0), Qη = qIm×n, q > 0
is abitrary value.

Output:
- Vector γ = (γ1, γ2, ..., γn) is calculated from (36).

and the general structure of new controller for nonlinear
system in shown in Fig. 1.

4 Extension of adaptive neural and

disturbance estimation for mimo

nonlinear system (Nasc-de)

The results of Theorem 1 and 2 are extended for MIMO
nonlinear system given as ẋk = xk+1 1 ≤ k ≤ n− 1

ẋn = F(x) + H(x)u + d(x, t); ‖d(x, t)‖ ≤ ρ
y = x1

(37)

in which x = (x1, ..., xn)T ∈ Rm; x1 =
(x11, x12, ..., x1m)

T u = (u1, u2, ..., un)T ∈ Rn and
F(x); H(x) = (h1(x), h2(x), ..., hn(x))T ∈ C∞; d(x, t) =
(d1(x), d2(x), ..., dn(x))T .

The F(x) ∈ Rn and H(x) ∈ Rn×n are supposed
to be unknown (uncertain) but with a limited bound,
u ∈ Rn are the inputs, u ∈ Rn are the outputs of the
system, x is the state vector, which is assumed to be
available for measurement and d(x, t) ∈ Rn represents
the unknown but bounded and smooth external distur-
bances (load, white noise....). In order for the system to
be controllable, we require that det(H(x)) 6= 0 for x in
the operational field of the system. Thus, the above n-
degree system is in the normal form.
Assumption 3:

‖d(x, t)‖ ≤ ρ and d(x, t) ∈ C∞ (38)

The MIMO RBF neural network can be expressed as
three layers (see Fig. 4): n inputs; one hidden layer
with m neural and n outputs. The output depends
linearly on the connection weights. The MIMO RBF
neural network can be performed such as (1)

b1 = ΘT
1 Ξ(x); Θ1 = (Θ11, Θ12, ..., Θ1m)

T

b2 = ΘT
2 Ξ(x); Θ2 = (Θ21, Θ22, ..., Θ2m)

T

...
bn = ΘT

n Ξ(x); Θn = (Θn1, Θn2, ..., Θnm)T

. (39)
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Figure 1. The scheme of new adaptive RBF neural network and disturbance estimation

Figure 2. The structure of MIMO RBF neural network

This yields, b = ΘΞ(x) where

b =


b1
b2
...

bn

Θ =


Θ11 Θ12 · · · Θ1m
Θ21 Θ22 · · · Θ2m

...
...

. . .
...

Θn1 Θn2 · · · Θnm


Ξ(x) = (Ξ1(x), Ξ2(x), .., Ξm(x))T

(40)

in which, the basis function Ξ(x) is Gaussian function
in (2). The unknown function F(x) and H(x are ap-
proximated by RBF neural network (50) with Γ(x) =
ΘFΞF(x) and Ĥ(x) = ΘH ΞH(x). The Θ∗H and Θ∗F are
called optimal values

F(x) = Θ∗FΞF(x); H(x) = Θ∗H ΞH(x)

and η(x, t) = d(x, t) + ∆F(x) + ∆H(x)uc is lumped
disturbance.
The proposed controller for MIMO nonlinear system
(37)

u(t) = uc(t) + ud(t)
uc = Ĥ−1(x)(−Γ(x)+
+y(n)

m + K1e + K2ė + ... + Kn−1en−1)
ud = −Ĥ−1(x)η(x, t)

(41)

in which K1 = diag(ki1); K2 = diag(ki2); ...; Kn−1 =
diag(ki(n−1)).

Theorem 3. The nonlinear system (37) with the controller
(41) will be asymptotically stable. If the ΘH , ΘF updated by
the adaptive law

Θ̇F = −Q−1
F ΞF(x)ε; Θ̇H = −Q−1

H ΞH(x)εuc (42)

and the disturbance estimation is obtained form

η̂(x, t) = −
∫ t

0
Ξη(x)(Q−1

η )εdtΞη(x)− ΓE(t) (43)

in which E = (e, ė, ..., en)T and Γ = (γ1, γ2, ..., γn); γi =
diag(γij); j = 1, 2, .., n is root of

ΓAD + ΓBDΓ + ΞT
η (x)Q−1

η Ξη(x)aD = 0 (44)

Proof: Theorem 3 is proven similarly as the proof
of Theorem 2. The adaptive law (42) can be found by
using Lyapunov function

V = 1
2 ε2 + 1

2 Θ̃F QFΘ̃T
F + 1

2 Θ̃hQH Θ̃T
H + 1

2 Θ̃ηQηΘ̃T
η

and the dynamic error can be expressed
ė
...

e(n−1)

e(n)


︸ ︷︷ ︸

E

=


Θ
...

Θ
I


︸ ︷︷ ︸

BD

eη+

+


Θ I · · · Θ
...

...
. . .

...
Θ Θ · · · I
−K1 −K2 · · · −Kn−1


︸ ︷︷ ︸

AD


e
...

e(n−2)

e(n−1)


(45)
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Figure 3. Two uncertain parameters of system

and notice that, in (44) aD = (K1, K2, ..., Kn) ∈
Rn×(n×n); AD ∈ R(n×n)×(n×n); BD ∈ R(n×n)×n; Γ ∈
Rn×(n×n); Ξ(x) ∈ R1×m and Qη ∈ Rm×m.

5 Illustrative example

5.1 A coupled tank liquid level system

In this section, we give an example of tracking
reference set point with a coupled tank liquid level
system. The simulation illustrates the convergence of
error under our proposed TC-RBF and NA-RBF-DE
approach. In [7], the modeled equation of coupled tank
liquid level system and parameters given as

d
dt

(
x1
x2

)
=

 −b12a12
√

2g|x1−x2|
A1(

b12a12
√

2g|x1−x2|−b2a2
√

2gx2

)
A2


︸ ︷︷ ︸

a(x)

+

+

( k
A1
0

)
︸ ︷︷ ︸

b(x)

u(t); y = x2 = g(x); x = (x1 x2)
T = (h1 h2)

T

(46)
We use the Theorem [17] in order to convert (46) into
(3) where

f (x) = L2
ag(x); h(x) = LbLag(x) (47)

We assume that the function of f (x) and h(x) descri-
bing the system dynamics are unknown (uncertain).
The control target guarantees for the liquid level of
Tank 2 at the set point. Opened valve ratio of pump 1
is adjusted by control law, and there are two uncertain
parameters (the cross-sectional area interaction pipe a12
and the flow rate of liquid into tank 2 a2) as Fig. 3.
We would calculate the f̂ (x); ĥ(x); η(t) by the adaptive
RBF neural network which has 9 neurons in the hidden
layer. The input vector of RBF is composed of two
inputs x = (x1 x2)

T , the radial basis functions are
chosen as Gaussian functions as given:

φbi(x) = exp

(
− (x1 − c1i)

2 + (x2 − c2i)
2

2σ2

)
(48)

where the corresponding widths for every function is
σ = 0.7 and the centers of the basis function are evenly
distributed in state space as Fig. 4 and ΘT is connection
weight matrix between the hidden layer and the output

Figure 4. The centers of basis function

Figure 5. Adaptive gains of the NA-RBF-DE and TC-RBF

layer updated by adaptive law in Theorem 1 for TC-RBF
and Theorem 2 for NA-RBF-DE. We choose the initial

Table I
The parameters of coupled liquid level system

Parameter Value
A1, A2 the cross-sectional area of tank 1 and tank 2 100cm2

Qin the flow rate of liquid into tank 1 u(cm3/sec)
Qout the flow rate of liquid into tank 2 0.8cm3/sec

h1, h2 the height of liquid in tank 1 and tank 2 cm
b2 the cross sectional area of outlet pipe in tank 2 0.5cm2

a12 the cross-sectional area interaction pipe cm2

b12 the value ratio of interaction pipe 1.5
g acceleration of gravity 981cm2/sec

a2 the value ratio of outlet pipe of tank 2 1.5

parameters kp(0) = 1; kd(0) = 5 of TC-RBF and NA-
RBF-DE. In this coupled tank liquid level system, we
consider that this system is affected by the disturbance
d(t) as Fig. 7. It notes that the labels of the horizontal
axis of figures are the time and these of vertical axis of
Fig. 6, 7 and Fig. 8 are the centimeter.

In the first case, we will compare our proposed met-
hods TC-RBF to Adaptive fuzzy Sliding Mode Control
(AFSMC) in [11]. Comparison of liquid level control
simulation between TC-RBF and AFSMC is presented.
A response of both TC-RBF and AFSMC are almost
same. However, it is obviously that the tracking error
for the TC-RBF due to reference liquid level is a much
less than those by AFSMC see Fig. 6.

In second case, NA-RBF-DE is shown, the adaptive
ΘT

k = (k1 k2) of the NA-RBF-DE automatically alter
when disturbance influence on system see Fig. 5. The
disturbance estimator can be computed as Theorem 2 in
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Figure 6. Tracking error with the disturbance of TC-RBF and AFSMC

Figure 7. Disturbance estimation of TC-DE-RBF without γ and with
γ

which the feed-forward correction term γ in (36) where:

Ad =

(
0 1
−k1 −k2

)
; ad = ( −k1 −k2 );

γ =
(

γ1 γ2
)

Bd = ( 0 1 )T ; Qη = 0.01I(9×9); Ξη(x) = (1 0(1×8))

k1(t) = k1(0) + 1
qk11

∫
(ym − y)εdt

k2(t) = k2(0) + 1
qk22

∫
(ẏm − ẏ)εdt

(49)
As mention, the lumped disturbance signal η(x, t)

contains both unknown input noise d(x, t) and error
structure δ f (x), δh(x). The simulation results of the
disturbed case are shown in Fig. 7, we can see that the
disturbance estimator can be almost exactly disturbance
term. It is clear that tracking error of NA-RBF-DE is
very small, approximately 10−6 see Fig. 6 and Fig. 8
which is less than TC-RBF and is a lot less than AFSMC.

Figure 8. Tracking control with the disturbance of NA-RBF-DE and
AFSMC

Figure 9. The two degree of freedom AMBs

5.2 An active magnetic bearing system

In this section, an active magnetic bearing system as
Fig. 9 , used to illustrate our proposed methods. AMB
system replaces mechanical bearings used in electric en-
gine working in special environments [10], [18]. Because
it uses magnetic forces to support the movement of the
spindle without mechanical contacting, the new techno-
logy bearings have a number of advantages compared
to other types of conventional bearings. However, this
system is the unstable, so a feedback control loop is
necessary to stabilize system. The control objective is
that the position x and y of a suspended object follow
the position reference xm and ym with parameters of
AMBs as Table II. The modeling a AMB in Euler

Table II
The parameters of AMBs

Parameters Values
Mass of rotor (kg) m=12.4

Displacements from the cylindrical rotor
center alignment to fixed origin (m) hrt = h = 0.21
Moment of inertia in k-axis (kg.m2) Jk = 6.88 ∗ 10−3

Moment of inertia in i
and j-axis (kg.m2) Ji = Jj = 2.22 ∗ 10−1

Speed of rotor (rpm) 10000
The ratio electromagnetic-current (N/A) Ki = 102.325

The ratio
electromagnetic-displacement (N/A) Ks = 4.65 ∗ 105

The gravity acceleration (kg.m/s2) g = 9.81

Lagrange equation follows as

u + d(t) = D(q)q̈ + C(q, q̇)q̇ + G(q) (50)

where

D(q) =

 2Ji
Ki l2

rtcosθx
0

0 2Ji
Ki l2

rtcosθy

 , G(q) =

 −mgh
Ki l2

rt
y

−mgh
Ki l2

rt
x


C(q, q̇) =

 − Ji sin θx
Ki l3

rtcos3θx
ẏ − ωrm Jk

Ki l2
rtcosθy

ωrm Jk
Ki l2

rtcosθx
− Ji sin θy

Ki l3
rtcos3θy

ẋ

 , u =

(
iy
ix

)
with θx; θy is very small, so we assume θx ≈ θy, we
obtain

D(q) = D(q)T > 0; d
dt

(
1

cosθx

)
= − sin θx

lrtcos3θx
ẏ

D(q) =

 −2Ji sin θx
Ki l3

rtcos3θx
ẏ 0

0 −2Ji sin θy

Ki l3
rtcos3θy

ẋ


= C(q, q̇) + CT(q, q̇)

and q = (x, y)T By introducing x = (q, q̇, q̈)T as state
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Figure 10. The disturbance estimation without the correction term Γ

Figure 11. The disturbance estimation with the correction term Γ

Figure 12. The tracking error of NASC-DE

Figure 13. The tracking error of ACISS

vector, equation (50) can be rewrite as ẋ1 = x2
ẋ2 = F(x) + H(x)u + η(x, t);
y = x1

(51)

in which F(x) = D−1(q)(C(q, q̇)q̇ + G(q)), H(x) =
D−1(q) and η(x, t) = D−1(q)d(t)

We would calculate the Γ(x); Ĥ(x); η(t) by the adap-
tive RBF neural network which has 18 neurons in
hidden layer. The input vector of RBF is composed
of four inputs x = (x ẋ; y ẏ)T , and the output vector
of RBF has two outputs b = (b1; b2) the radial basis
functions are chosen as Gaussian functions as (48), the
corresponding widths for every function is σ = 0.7 and
the centers of the basis function are evenly distributed
in state space as Fig. 4. We would compare our propo-
sed method NASC-DE to Adaptive Control based on
ISS stabilization (ACISS) in [10]. We choose the fixed
matrices K1, K2 of ACISS and NASC-DE

K1 =

(
1 0
0 1

)
, K2 =

(
5 0
0 5

)
Then, solving the equation (44) to find the feed-forward
correction term Γ

AD =

(
Θ I
−K1 −K2

)
; aD = ( −K1 −K2 );

Γ =
(

γ1 γ2 γ3 γ4
)

BD = ( Θ I )T ; Qη = 0.01I(9×9); Ξη(x) = (1 0(1×8))
(52)

and the controller ACISS has form

u(t) = D(q̈r + K1e + K2ė− v(t))

in which, a disturbance compensation signal v(t) is
chosen such as |p(t)| ≤ 0.5, ∀t.

The simulations results of the case that a disturbance
is considered are shown in Fig. 10 without feed-forward
correction term Γ, the results of disturbance estimator
with feed-forward correction term are almost as iden-
tical as real disturbance term (see Fig. 11). In addition,
two kinds of disturbances are taken into account in
this case. Based on this estimator, the disturbances are
eliminated by the control law. This means that the
performance of the tracking error of NASC-DE is very
small (see Fig. 12), which is a much less than ACISS
in Fig. 13. It is clear that the performance of close loop
system is improved by using our proposed approaches.
It notes that the labels of the horizontal axis of figures
are the time and these of vertical axis of Fig. 10, 11, 12
and Fig. 13 are the centimeter.

6 Conclusion

The paper showed the disturbance estimator based on
adaptive RBF neural network combined with the feed-
forward correction term, this method is applied for
both uncertain nonlinear SISO and uncertain nonlinear
MIMO system. Three proposed controllers (TC-RBF,
NA-RBF-DE and NASC-DE), which combine distur-
bance estimation with adaptive parameter vector of the
controller. Those approaches are applied for a class of
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nonlinear systems involving plan uncertainties and ex-
ternal disturbances containing SISO and MIMO system.
The tracking performances are greatly improved by the
use the disturbance estimator, adaptive RBF neural net-
work and adaptive law of controller’s parameters. We
explore the effect of the controller from the simulation
results.
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