
22 REV Journal on Electronics and Communications, Vol. 10, No. 1–2, January–June, 2020

Regular Article

An Improving Way for Website Security Assessment
Nguyen Duc Thai, Nguyen Huu Hieu

Faculty of Computer Science and Engineering, Ho Chi Minh City University of Technology (VNUHCM),
Ho Chi Minh City, Vietnam

Correspondence: Nguyen Duc Thai, ngdthai@hcmut.edu.vn
Communication: received 10 June 2019, revised 21 June 2019, accepted 18 March 2020
Online publication: 10 August 2020, Digital Object Identifier: 10.21553/rev-jec.239
The associate editor coordinating the review of this article and recommending it for publication was Prof. Tran Manh Ha.

Abstract– The web-based enterprise applications, such as e-commerce, online banking, online auction, social networks,
forums. . . , have been more and more popular in our society. These applications become the target of security attacks.
Hence, securing websites and connection to the users is important. If we own or manage a website, we certainly concern
about how secure it is. For assessing the security level of a website, we usually take some action, including testing the
website using security scanning tools. Unfortunately, most of scanning tools have limitations and need to be updated
frequently for new vulnerabilities. Using only one scanning tool is sometime not enough to determine security level of a
website. In this paper we propose a framework supporting website security assessment. The idea of this framework is to
integrate different scanning tools into the framework. We then write a program to implement this framework with a real
website. We guide the users how to add a new scanning tool to this framework, manage it and generate a final report. In
addition, we discuss the problem of security on client-side called clickjacking attack that many clients may suffer when
accessing the malicious websites, we propose a method to protect them from this attack.

Keywords– Security assessment, OWASP standards, website security scanning tools.

1 Introduction

Along with the improvement of web technology, the
security attacks have dramatically increased over the
past decade, target on websites and web applications.
In consequence, sensitive and confidential data could
be stolen. According to Symantec Internet Security
Report Vol. 24 [1], web attacks were up to 12.5% in
December 2018 in compare with previous months at
approximately 150,000 per day.

Data illustrated in Figure 1 describes the web attacks
per day in a month, each column presents the number
of web attacks in one month from January 2018 to
December 2018. We assess the website security based
on OWASP standards [2] as criteria. The OWASP is a
not-for-profit organization focusing on improving the
security of software. It provides the testing guide to find
vulnerabilities of a software. As defined, a vulnerability
in our context is a flaw or weakness in the website
design, implementation, operation or management that
could be exploited to compromise the website security
objectives.

There are some types of testing:

• Blackbox testing: this is the simplest and most basic
form of identifying a web server, it looks at the
server field in the HTTP response header. It is
known as behaviorial testing in which the internal
structure of the website is not known to the tester.

• Whitebox testing: it is known as clear box testing,
refers to testing a website with full knowledge
and access to all source code and architecture
documents.

To identify and patch the vulnerabilities that would
be exploited by an attacker, people usually perform
penetration testing. The ideal form of penetration test-
ing is blackbox, as most of attackers have no knowledge
of the internal features prior to launching their attack.

This paper is concerned with providing a new frame-
work giving users the posibility to use more scanning
tools in one running. Section 2 reviews related works
with similar model. Some common attacks on websites
and web applications are discussed in Section 3. In
Section 4 we propose the new framework mentioned
above. Section 5 shows experimental results with our
software program called VulScanner with evaluation. In
Section 6 we discuss the problem of Clickjacking attack
and conclude the paper in Section 7.

2 Related Works

YASCA [3] is an open-source program, which scans
website security vulnerabilites in the program source
code called whitebox scanning. It is a command-
line tool that generates reports in HTML, CSV, XML,
MySQL, SQLite, and other formats. YASCA has many
tools for different programming languages, such as
.NET, ASP, C/C++, COBOL, ColdFusion, CSS, HTML,
Java, JavaScript, Perl, PHP, Python, Visual Basic,. . . Un-
fortunately, this program was discontinued, its official
website cannot be accessed anymore.

J. Bau et al. [4] combined 8 different blackbox
scanning tools for website security assessment and
showed results. Their assessment was provided based
on a database of vulnerabilities and the combination

1859-378X–2020-1203 © 2020 REV

N. D. Thai & N. H. Hieu: An Improving Way for Website Security Assessment 23

Figure 1. Web attacks per day [1].

of scanning tools was achieved manually, not automat-
ically.

JARVIS is a framework provided in [5], which in-
tegrates five different security scanning tools such as
Arachni, OWASP ZAP, Skipfish, Wapiti, w3af. JARVIS
works as a proxy between scanning tools and web
applications, which are scanned. The weakness of this
model is that it is unable to integrate scanning tools
which are not connected through proxy.

3 Common Attacks on Web Applications

The OWASP provided top 10 web security vulnerabili-
ties, discussed as below.

• Injection: this is a widely known attack technique,
rated as the number one problem on the list of
top 10 security issues. This attack occurs when
the user is able to input untrusted data tricking
the website to execute unintended commands or
accessing data without proper authorization. One
of the reasons is that the user-supplied data is not
validated, filtered, or sanitized by the website. The
injections can be SQL queries, PHP queries,. . .

• Broken authentication: this occurs when the ap-
plication mismanages session related information
such that the sensitive information gets compro-
mised. The information can be the password, credit
card number, session cookies,. . .

• Sensitive data exposure: sensitive data could be
sniffed or modified if not handled securely by the
website. The data could be transmitted or stored in
clear text, weak cryptographic algorithms used, or
sensitive data in use in default data, such as keys,
passwords,. . . To secure the user data in transmis-
sion, we consider to use secure connections, such
as HTTPs instead of HTTP.

• XML external entities: this occurs when the website
enables users to upload a malicious XML which
exploits the vulnerable code and/or dependencies.

• Broken access control: this occurs if a user is
able to access unauthorized resources, this can be

access to restricted pages, database, directories,. . .
Example: a user can use the permissions of the
website admin to edit and modify the data. The
countermeasure is usually to apply access control
to the server side of the website.

• Security misconfigurations: the developers and IT
staff ensure functionality of the website and not
the security. This can happen at any level of an
application stack, including the network services,
platform, web server, application server, database,
frameworks, custom code, and pre-installed virtual
machines, containers, or storage.

• Cross Site Scripting (XSS): this occurs when an
attacker is able to insert untrusted data/scripts into
a web page. This data/scripts get executed in the
browser and can steal user data, deface websites,. . .
Preventing XSS requires separation of untrusted
data/scripts from active browser content.

• Using Components with Known Vulnerabilities: it
may occur when we do not know the versions of
all components we use (both client-side and server-
side). This includes components we directly use
as well as nested dependencies, or if we do not
scan for vulnerabilities regularly and so on. To
prevent this risk, we consider to remove unused
dependencies, unnecessary features, components,
files, and documentation,. . .

4 Proposed Framework

Our proposed framework model is shown in Figure 2.
Part (1) in the model presents scanning tools, shown as
plugins, integrated into the proposed framework. These
tools could be called to run anytime, return report
to the framework. Because the tools are different, the
output formats could be different. We need to change
all the output results to the desired formats before
generating the final report. Part (2) shows Lexer/Parser
for syntax analysis used for whitebox scanning. We
map all scanning results into database in part (3) where
we remove duplicated vulnerabilities from different

24 REV Journal on Electronics and Communications, Vol. 10, No. 1–2, January–June, 2020

Figure 2. The model of proposed framework.

Figure 3. Use-case diagram of proposed framework.

scanning tools. The main part of our framework is
shown in part (4), which manages all scanning tools.
The final report is created in part (5), given in XML
format and printed out by another module in this part,
for different purposes, such as for web, for printer, for
pdf file,. . .

In the requirement analysis stage we determine the
functionalities of the framework, shown in Figure 3. The
users can scan a website by calling the selected plu-
gin(s), can manage plugins by adding a new one, edit-
ing its features, removing it from the framework. Fur-
ther, the users can manage the vulnerability database,
view the results after scanning, create log files and
so on.

Figure 4 shows flowchart of the framework. The users
select plugins to call for execution, input website URL
(in case of blackbox testing) or path to web application
(in case of whitebox testing) that needs to be scanned.
For each plugin it takes some time to complete scan-
ning, so if we select more than one plugin, the time is

Figure 4. Framework flowchart.

expected to be larger. If we cancel scanning, we receive
incomplete report.

4.1 Call plugin(s) for scanning

The framework itself cannot scan any website. It just
calls the plugins to do that and receives the results from
them. If the website source code is not available, only
blackbox scanning type could be used.

N. D. Thai & N. H. Hieu: An Improving Way for Website Security Assessment 25

Figure 5. Plugin management.

4.2 Plugin Management

We can manage plugins using different ways. As
shown in Figure 5, we can edit a plugin by changing
the plugin name, version, path to web application
(whitebox) or remove it from the framework.

4.3 Vulnerability Database Management

Information about website vulnerabilities according
to OWASP standards can be found in Vulnerability
Database. The users can manage this database by
adding new kinds of vulnerabilities, updating them
or removing them from database. We manage this
database based on most recent OWASP standards,
where we can find information about different testing
attacks, vulnerabilities and countermeasures. See dia-
gram in Figure 6.

4.4 Vulnerability Mapping

Vulnerabilities found by plugins may be the same but
appear with different names and we want to show them
once in the report. We identify this difference and map
the vulnerabilities onto desired names. After one simple
step of processing we get the results without duplicates,
example shown in Figure 7.

4.5 Data Formats

Data containing vulnerabilities and data in the final
report are stored in XML files. The advantage of using
XML is easier retrieving data and sharing between
framework features. Example is shown in Listing 1.

Figure 6. Database management.

Figure 7. Mapping vulnerability names.

5 Experimental Results

We create a program called VulScanner to implement
the proposed framework, written in C#. The interface
of VulScanner shown in Figure 8, where the users
can select plugin(s) and specify the target website to
perform testing. As mentioned above, whitebox testing
can be used only if the website source code is available.

For demonstration, we integrate a couple of scanning
tools into the framework, as listed in Table I and
Table II.

The first experiment was conducted with localhost
DVWA with 3 plugins Arachni, SQLMap and Wapiti,
as in Table III. After selecting all 3 plugins, the results
are shown in Table V.

26 REV Journal on Electronics and Communications, Vol. 10, No. 1–2, January–June, 2020

Listing 1
Data Stored in XML File

<vulcategories>
<vul>
<name>Vulnerability name</name>
<description>Vulnerability description</description>
<environment>Environment of this vulnerability</environment>
<example>Some example</example>
<determination>How to detect</determination>
<protection>How to protect your web app</protection>

</vul>
...
</vulcategories>

Figure 8. The interface of VulScanner.

Table I
Blackbox Plugins

Plugins Search for vulnerability type

SQLMap SQL Injections

Wapiti
Different types of vulnerabilitiesZap

Arachni

Table II
Whitebox Plugins

Plugins Search for vulnerability type

CPPCheck C++ programming code

Findbugs,
Jlint

Java source code

Jslint JavaScript source code, syntax only

PHPlint PHP source code, syntax only

Pixy XSS and SQL injections

Yasca Open source program, discontinued

From the results displayed in the VulScanner in-
terface, we can follow the link to find more details
of each vulnerability such as name of plugin, which
found the vulnerability, from what URL, vulnerability

Table III
Demonstration with VulScanner

Plugins Found vulnerabilities

Arachni

SQLMap

Wapiti

Cross-Site Scripting (XSS)

Blind SQL Injection (timing attack)

Cross-Site Scripting (XSS)

SQL Injection

HTTP TRACE

X-Frame-Options header not set

HTTPOnly Cookie

Interesting response

Table IV
Vulnerabilities in OWASP Top 10

Vulnerability name OWASP Top 10

Command Execution A1 (2017)

CSRF A8 (2013)

File Inclusion A3 (2007)

SQL Injection A1 (2017)

XSS A7 (2017)

Path Traversal A5 (2017)

Sensitive Data Exposure A3 (2017)

Weak Credentials A2 (2017)

description, severity, and the link out where to see more
details about the vulnerability.

Similarly, we demonstrated VulScanner with white-
box type scanning and received experimental results as
expected.

Further test was performed on a website containing
different vulnerabilities, described as OWASP Top 10,
in Table IV.

VulScanner runs on Windows 7 of a computer 2 GB
RAM, CPU core 2 duo e8500. We call each plugin
separately, compare total scanning time, number of vul-
nerabilities to the results received from the VulScanner:

Some vulnerabilities could be found by more than

N. D. Thai & N. H. Hieu: An Improving Way for Website Security Assessment 27

Table V
Scanning Results with DVWA

Plugins Scanning time
(hh:mm:ss)

Number of vul-
nerabilities

Arachni 05:28:12 293

SQLMap 00:01:46 1

Wapiti 00:21:53 5

ZAP 00:12:14 141

Pixy 00:00:38 0

YASCA 00:01:09 323

Framework 06:18:42 386

one scanning tool, so the number of vulnerabilities
found by VulScanner is smaller than total vulnerabil-
ities found by the tools called separately. The VulScan-
ner calls the plugins sequentially, the time it requires
for completion of the experiment is a little bit longer in
compare with the total time of all individual scannings.

One more experiment was performed with the web-
site provided by Acunetix as shown in [6]. We used
the same system configuration as mentioned above,
the tested website is http://testphp.vulnweb.com/.
The website source code is not available, so only the
blackbox scanning method could be used. We choose
SQLMap, Wapiti and ZAP as the plugins in VulScanner.

We repeated the test 3 times and received the results
as in the Table VI. The scanning time in different tests
are different due to network state.

The number of vulnerabilities are shown in Table VII.
They are different because of network state, some of the
connection requests are failed or got timeout.

The proposed framework was implemented and pro-
vided results as we expected. The accuracy of the test-
ing depends on the plugins selected and their accuracy.
The more plugins selected the longer it takes to com-
plete the scanning. The blackbox tests are usually the
fastest tests, however the limited information available
to the testers increases the probability that vulnerabili-
ties will be overlooked and decreases the efficiency of
the tests. Whitebox tests are usually slow, and large
amount of data available to the testers requires time
to process.

6 Clickjacking

In general, securing the websites is not enough. The
websites’ users can still become the victims of a kind
if security attacks, called Clickjacking. To protect the
users from this attack, we developed a script running
on client-side system, automatically detects clickjacking
and lets the users continuing their surfing securely.

Clickjacking, also called web framing attack [7], was
reported by Jeremiah Grossman and Robert Hansen
in 2008 [8]. This attack uses a transparent frame or a
tiny frame to hijack user’s clicks. Clickjacking attack
is based on the simple idea: attackers construct a web
page containing an invisible (or rarely visible) frame,

Table VI
Scanning Time [in seconds]

Tests SQLMap Wapiti ZAP VulScanner

1 26 1:8:20 1:25 1:10:11

2 32 1:18:55 1:45 1:21:12

3 18 1:12:52 1:22 1:14:32

Table VII
Number of Vulnerabilities Found

Tests Number of Vulnerabilities
Found by VulScanner

1 93

2 96

3 106

the position of the frame is set so that it tricks users into
clicking on elements in frame while they think they are
acting with the parent page. In practice, clickjacking
attacks are usable for the purpose of tricking users
into clicking on banner ads, “Like” button in social
networks, button that shares their webcam, initiates
money transfers, or performs any action caught by a
user’s mouse click [9, 10].

Recently, clickjacking attack becomes popular and
many prevention techniques have been proposed, pro-
vided in [11], X-FRAME-OPTIONS headers in [12],
frame bursting in [13],.... Unfortunately, these tech-
niques could not help to protect users from some
kinds of Clickjacking attacks using sharing widgets,
such as the Like button of Facebook [14] or Plus One
button provided by Google Plus social network. These
social widgets allow users to interact with the network
by one-click without leaving the context of the cur-
rent page.

6.1 Proposed Algorithm

We proposed an algorithm to detect hidden frame
that can perform Clickjacking attack in a web page,
based on Attack Variants [10] and demonstrations col-
lected from Internet. Using this algorithm, we im-
plemented Clickalert, a Firefox browser extension to
protect users from clicking on an element that they
do not totally see. There are different browsers such
as Microsoft Internet Explorer, Google Chrome, Mozilla
Firefox, Safari, Opera,. . . but we choose to use Mozilla
Firefox for this research. The model is shown in Fig-
ure 9.

From the model above, the main program receives the
input as a list of URLs, sends it to the Firefox browser,
receives the results of scanning process and returns the
final report.

Our extension can be used by all Internet users to
protect themselves from this kind of attack, it warns
them when they click on a hidden element in an iframe.
Furthermore, the extension can help security experts to
test a large number of web pages for clickjacking attack.

28 REV Journal on Electronics and Communications, Vol. 10, No. 1–2, January–June, 2020

Listing 2
Pseudo Code for Checking Visibility of An Element

Set parent to iframe (the iframe need to check for visiblity)
While parent is not null

Check visibility of parent
If visibility attribute is met

Set parent to parent element of parent
else

Return True
Endif

Endwhile
Return False

Figure 9. Clickjacking Detection Model.

The key point of our approach is to check all ele-
ments’ attributes in a web page to find those match
criteria defined above by examine all HTML/CSS at-
tributes of the checking web page. Listing 2 shows the
pseudo code we use to check the visibility of an iframe
in the current web page. We start checking from the
frame element in the DOM tree [15, 16]. Then we check
the visibility property of the selected element and all
of its preceding elements. If any of these elements does
not pass the visibility checker function, then this is the
indication of an invisible element used for Clickjacking
attack.

For checking the visibility of an HTML element, as
mentioned in [15], we verify the attributes of its element
if they meet the following criteria:

• The opacity attribute value is a CSS attribute that
describes the opacity-level of an element, its value
is in the range 0 (transparent) to 1.0 (completely
visible). The condition is that the value of the
opacity attribute must be higher than a certain
threshold. Checking these attributes can be done
by using Javascript language (used to build the
Browser addon), we get it by the Javascript API
window.getComputedStyle() that will compute all fi-
nal CSS values of an element after the web page is
loaded completely in the browser.

• Dimensions of an element can also influence its
visibility, e.g. we can set the width and height of an
element to zero to make it hidden. To satisfy this
condition, we define the minimum threshold for
width and height, and dimensions of an element
must be higher than these thresholds.

Table VIII
Experimental Results of Clickjacking Attack

Number of websites checked Percentage

Visible 695 95.3

Hidden 34 4.7

Total 729 100

Using the algorithm described above, we develop
the Clickalert extension that can protect users from
Clickjacking attack when they surf the Web. When
users have our extension integrated with their Firefox
browser, whenever they click on an element in the
browser, the extension will check whether that element
belongs to an iframe and is visible to users. They will
receive a warning if clicking on an element in an frame
that is not totally visible. Our extension also has a
feature allowing users to remove hidden frame when
they click on it accidentally.

6.2 Experimental Results

We created the sample pages containing malicious
codes for Clickjacking attack. We try to access those
pages and see that the browser addon works correctly
and sends an alert whenever user click on a hidden
iframe. It can also detect all hidden iframes and their
source codes.

We choose 729 websites, collected from [17], [18] and
use our addon to scan and find out websites that may
trick users by Clickjacking attack, as in Table VIII.

6.3 Discussion

Clickjacking is the web-based attack which is the sub-
ject of many security reports recently. As an appendix
to the framework proposed for website security asssess-
ment, we created an extension that can be integrated
into users’ browsers as an ADD-ON, to protect them
from Clickjacking attack. Experimental results showed
that the extension works properly in the case when
users click on an invisible element, intentionally created
by the attackers.

N. D. Thai & N. H. Hieu: An Improving Way for Website Security Assessment 29

7 Conclusions

The contribution of our paper is not in creation of a
new scanning tool, but we suggest the way to integrate
different plugins to get better results. We showed that
it is very easy to add a new plugin to the framework,
easy to configure the framework to work with the new
plugin.

Different tools give results in different format, so we
need to map them onto desired format as provided by
OWASP. The results given by our framework can be
acceptable, however we can speedup the scanning by
running the tools in parallel, we consider this issue in
the future work.

Regard the clickjacking, we provided an effective way
to detect hidden frames, then we implemented it in
Firefox. This tool can protect users from clickjacking
on an element that they do not see.

Acknowledgment

This research is funded by Vietnam National University
Ho Chi Minh City, under grant number C2017-20-19.

References

[1] Symantec Internet Security Report, vol. 24, 2019.
[2] OWASP Top 10 Most Critical Web Application Security

Risks. [Online]. Available: https://www.owasp.org/ in-
dex.php/Category:OWASP_Top_Ten_Project (accessed
Jan. 25, 2019)

[3] YASCA, official website. [Online]. Available: yasca.org,
or on Github: https://github.com/scovetta/yasca
(accessed Jul. 2018)

[4] J. Bau, E. Bursztein, D. Gupta, and J. Mitchell, “State of
the art: Automated black-box web application vulnera-
bility testing,” in Proceedings of the IEEE Symposium on
Security and Privacy. IEEE, 2010, pp. 332–345.

[5] D. Esposito, M. Rennhard, L. Ruf, and A. Wagner, “Ex-
ploiting the potential of web application vulnerability
scanning,” in Proceedings of the Thirteenth International
Conference on Internet Monitoring and Protection, 2018, pp.
22–29.

[6] Home of Acunetix Art. [Online]. Available: http://
testphp.vulnweb.com (accessed Aug. 2019)

[7] Cursorjacking again. [Online]. Available: http://blog.
kotowicz.net/2012/01/cursorjacking-again.html
(accessed Jan. 2012)

[8] R. Hansen and J. Grossman. Clickjacking. [Online].
Available: http://www.sectheory.com/clickjacking.htm
(accessed Jan. 25, 2019)

[9] M. Johns and S. Lekies, “Tamper-resistant likejacking
protection,” in Proceedings of the International Workshop

on Recent Advances in Intrusion Detection. Springer, 2013,
pp. 265–285.

[10] L.-S. Huang, A. Moshchuk, H. J. Wang, S. Schecter,
and C. Jackson, “Clickjacking: Attacks and defenses,” in
Proceedings of the 21st USENIX Security Symposium, 2012,
pp. 413–428.

[11] A. S. Narayanan, “Clickjacking vulnerability and coun-
termeasures,” International Journal of Applied Information
Systems, vol. 4, no. 7, pp. 7–10, 2012.

[12] D. Ross, T. Gondrom, and T. Stanley. HTTP
Header Field X-Frame-Options (RFC 7034) (2013)
InternetEngineering Task Force (IETF). [Online]. Avail-
able: https://www.ietf.org/rfc/rfc7034.txt (accessed Jan.
2018)

[13] G. Rydstedt, E. Bursztein, D. Boneh, and C. Jackson,
“Busting frame busting:a study of clickjacking vulner-
abilities on popular sites,” in Proceedings of the IEEE
Oakland Web 2.0 Security and Privacy (W2SP’10).

[14] Facebook worm - “likejacking”. [Online]. Available:
http://nakedsecurity.sophos.com/2010/05/31/
facebook-likejacking-worm/ (accessed May 2010)

[15] P. Thiemann, “A type safe DOM API,” in Proceedings
of the International Workshop on Database Programming
Languages. Springer, 2005, pp. 169–183.

[16] M. Heiderich, T. Frosch, and T. Holz, “Iceshield: Detec-
tion and mitigation of malicious websites with a frozen
dom,” in International Workshop on Recent Advances in
Intrusion Detection. Springer, 2011, pp. 281–300.

[17] Top 1000 website. [Online]. Available: https://www.
alexa.com/topsites

[18] Free web stats counter from motigo webstats -
catalogue/top 1000 sites. [Online]. Available: https://
trends.builtwith.com/websitelist/Motigo-Stats

Nguyen Duc Thai received BSc. (MSc.) and
Ph.D. from Slovak University of Technology in
Bratislava, Slovakia, in 1996 and 2005 respec-
tively. He is currently Head of Department of
Computer Systems and Networking, Faculty
of Computer Science and Engineering, Ho Chi
Minh City University of Technology. He has
been actively involved as a researcher and
teacher in the area of computer networks and
network security for many years.

Nguyen Huu Hieu is currently a full time
researcher at Ho Chi Minh City University of
Technology. He received his B.Sc. and M.Sc.
degree from Ho Chi Minh City University
of Technology in 2012 and 2015, respectively.
His current research interests include network
security and website security.

