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Abstract– Autonomous fault management of network and distributed systems is a challenging research problem and attracts
many research activities. Solving this problem heavily depends on expertise knowledge and supporting tools for monitoring
and detecting defects automatically. Recent research activities have focused on machine learning techniques that scrutinize
system output data for mining abnormal events and detecting defects. This paper proposes a two-phase defect detection
for network and distributed systems using log messages clustering and classification. The approach takes advantage of
K-means clustering method to obtain abnormal messages and random forest method to detect the relationship of the
abnormal messages and the existing defects. Several experiments have evaluated the performance of this approach using
the log message data of Hadoop Distributed File System (HDFS) and the bug report data of Bug Tracking System (BTS).
Evaluation results have disclosed some remarks with lessons learned.
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1 Introduction

Defect detection is one of main functions of fault man-
agement on network and distributed systems. Automat-
ing this function becomes highly demanding due to
the rapid development of these systems today with
complexity, dynamicity and scalability. However, de-
tecting defects automatically is challenging because this
problem heavily depends on expertise knowledge and
supporting tools usually used to organize the work-
flow of fault management process. To overcome these
obstacles, a prevailing approach has applied artificial
intelligence methods for exploiting system output data
and detecting defects on a such system. LogPAI and
Loghub projects [1, 2] provide an open-source arti-
ficial intelligence platform and a large collection of
system log data for automated log analytics. Many
research activities have successfully performed effective
machine learning methods on the platform and log data
for different purposes including anomaly detection or
problem identification. Moreover, a more feasible and
effective approach is to exploit multiple datasets instead
of a single dataset including log data, bug data and
other specific data for improving the performance of
defect detection.

This study aims at combining clustering and classifi-
cation methods for detecting defects on network and
distributed systems. We propose a two-phase defect

detection approach based on mining log messages and
bug reports data. The first phase applies K-means
clustering method to divide log messages into three
clusters: normal cluster contains log messages that can-
not link to defects, abnormal cluster contains log mes-
sages that can link to defects, and unknown cluster
contains log messages that need further investigation.
The second phase applies random forest method on bug
reports to build a classifier of optimal decision trees.
This classifier determines whether log messages in the
abnormal and unknown clusters are defects or not. This
two-phase approach is characterized by the workflow
similarity of fault management process and the capa-
bility of exploiting multiple machine learning methods
on log and bug datasets for improving defect detection.
The contribution of this study is thus threefold:

• Propose a two-phase defect detecting approach
based on machine learning methods for network
and distributed systems

• Apply the K-means clustering and random forest
methods for clustering and classifying log mes-
sages and bug reports to detect defects.

• Provide analysis of appropriate features for the
real HDFS log and BTS bug data, and performance
evaluation of the proposed approach.

The rest of the paper is structured as follows: The
next section presents several recent research activities of
mining system log data and applying machine learning
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methods for monitoring and detecting defects on net-
work and distributed systems. Section 3 describes the
statistical information of the HDFS log data and the
BTS bug data, and analyzes appropriate log and bug
features for the K-means clustering and random forest
methods. Section 4 provides the design of two-phase
defect detection, the algorithms of clustering abnormal
log messages and detecting defects from these abnor-
mal messages, and some implementation remarks. Sev-
eral experiments in Section 5 measure the performance
of the proposed approach using the HDFS log and BTS
bug datasets before the paper is concluded in Section 6.

2 Related Work

With the growth of data science, system log min-
ing has recently attracted many research activities for
improving system dependability. The authors of the
study [3] have proposed the combined approach for
mining console logs. The approach takes advantage of
program analysis and information retrieval techniques
to analyze sequences of events from the system and
detect operational problems. The study has presented
the resulting analysis of the critical log messages as-
sociated with the detected problems. The study of
Alspaugh et al. [4] has reported some experience of log
analysis, such as filtering, reformatting, and summa-
rizing log data. The study also presents state machine
based description of typical log analysis pipelines and
cluster analysis of the most common transformation
types to assist in making decisions. The authors of
the study [5] have provided an experience report of
using log analysis for anomaly detection. The study
reviews and evaluates six machine learning methods
on a large dataset of 16 millions log messages and
365 thousands anomaly instances. The authors of the
study [6] have proposed a clustering-based approach to
identify impactful system problems. The approach ap-
plies a cascading clustering algorithm on a sequence of
log events for correlating the clusters of log sequences
with system services. The LogPAI project [1] aims to
build an open-source artificial intelligence platform for
automated log analysis. The project provides a large
collection of system log datasets for automated log
analytics, namely Loghub [2]. Loghub includes several
log datasets obtained from real distributed systems,
supercomputers or servers and attracts many research
activities from both industry and academia. Our study
also uses the HDFS log data (part 2) in Loghub for
experiments.

Several studies of defect monitoring, diagnosis and
detection in network and distributed systems have ex-
ploited machine learning methods. The study of Ud-
din et al. [7] has proposed an approach of using a
distributed network search algorithm as a primitive for
building future network management systems. This al-
gorithm operates on network search systems organized
as the overlay of the physical network topology. The
overlay provides distributed query processing facilities
for retrieving operational state and configuration data

from network elements. The study of Tran et al. [8] has
proposed an approach for searching bug reports seman-
tically. This approach includes crawlers that obtain bug
reports from bug tracking systems, and then extracts
semi-structured bug data, and describes a unified data
model to store bug data. The approach also exploits
package dependency, fault dependency, fault keyword
and classification to seek the relationships between
defect causes using machine learning methods. The
study of Wang et al. [9] has addressed the problem
of automatic defect diagnosis and presented an online
incremental clustering method for cloud computing ap-
plications. This method learns access behavior patterns
and analyzes the correlation between workload and re-
source utilization metric. The method detects anomalies
by identifying the abrupt change of correlation coeffi-
cients, and locates suspicious metrics using the feature
selection method. The study of Zhou et al. [10] has
applied the traditional K-nearest neighbor algorithm
to recommend appropriate solutions for defects. This
algorithm uses the latent Dirichlet allocation method
to improve the effectiveness of similarity measure be-
tween the events and previous resolutions of similar
events. The study of Ferreira et al. [11] has proposed
an approach of using machine learning methods for
automating defect detection on solar-powered wireless
mesh networks. This approach applies knowledge dis-
covery methodology and a pre-defined dictionary of
defects and solutions for classifying new defects.

3 Log and Bug Data

3.1 HDFS Log Data (part 2)

The Loghub study [2] maintains a collection of sys-
tem logs for free access. The HDFS log data (part 2)
contains log files obtained from the HDFS system of 33
nodes at a university. The log data is collected at the
node level without modification or labeling and may
involve both normal and abnormal cases due to the
repair of three nodes. Table I reports some statistics of
this log data:

Table I
Some Statistics of the Log Data

number of log files 33
size of log files (GB) 16.05
number of log messages 58095613
number of INFO messages 57570609
number of WARN messages 500971
number of ERROR messages 24030
number of FATAL messages 3

A log message contains several features: date and time
in format of yy/MM/dd HH:mm:ss; severity level to
affect the system; component and class names to issue the
message; content to present the detail of the message.
The severity level accepts the following values:

• FATAL: The error is shown on the status console
and probably stops the application or system.
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• ERROR: The runtime error or unexpected condi-
tion is shown on the status console and probably
keeps the application or system running.

• WARN: The undesirable or unexpected condition
is shown on the status console and potentially
presents dangerous conditions

• INFO: The interesting message in application or
system progress is shown on the status console.

• DEBUG: The detailed information of an event to
debug the application or system is written to logs
only.

• TRACE: The more detailed information than DE-
BUG to help debug the application or system is
written to logs only.

An example of the WARN log messages is presented,
as follows:

2017-01-26 20:01:44 WARN org.apache.
hadoop.hdfs.server.datanode.DataNode:
Slow BlockReceiver write data to disk
cost:892ms (threshold=300ms)
2017-01-26 20:01:47 WARN org.apache.
hadoop.hdfs.server.datanode.DataNode:
Slow manageWriterOsCache took 822ms
(threshold=300ms)
2017-01-26 20:01:50 WARN org.apache.
hadoop.hdfs.server.datanode.DataNode:
Slow BlockReceiver write data to disk
cost:1653ms (threshold=300ms)

There are many repeated log messages with various
occurrence frequencies. The date and time features are
merged and a repetition feature is added to reduce the
repeated message. The repetition feature can accept
values: none, intermittent and high. The severity level
focuses on three values: FATAL, ERROR and WARN.
The component and class names are separated by two
features, e.g., org.apache.hadoop.ipc.Server
includes org.apache.hadoop.ipc as component
name and Server as class name. The keyword feature
contains significant words or word phases from the
content message. While processing and evaluating
words by the term frequency–inverse document
frequency method, the category feature is determined
by the keyword feature, e.g., Memory, Disk, Cache,
IO, Process, etc. Table II presents a list of extracted log
features used to cluster log messages.

3.2 BTS Bug Data

The EMANICS project [12] provides a flexible and
highly re-usable distributed computing and storage
testbed to support joint research activities of European
partners. The study [8] uses the testbed to obtain
bug reports from multiple BTSs including Buzilla [13],
Trac [14], Mantis [15], Launchpad [16], etc., and store
them in a database with a unified bug data schema.
Table III reports some statistics of this bug data.

A bug report contains several features divided into
two groups: numeric and enumerate features, such as,
identity, priority, severity, status, platform, component,
etc., and textual features, such as, title, description,

Table II
List of Extracted Log Features

Feature Description Type
datetime issuing date and time DateTime, original
severity influence level Enumerate, original

component occurring component Enumerate, derived
class occurring class Enumerate, derived

keyword distinct word phases String, derived
category specifying log category Enumerate, derived
repetition repeated log message Enumerate, derived

Table III
Some Statistics of the Bug Data

number of bug files 5
size of bug files (GB) 0.77
number of bug reports 483000
number of gentoo bug reports 150000
number of redhat bug reports 83000
number of mozilla bug reports 250000

Table IV
List of Extracted Bug Features

Feature Description Data Type
severity influence level Enumerate, original
priority fixing order Enumerate, original
status bug state Enumerate, original

component occurring component Enumerate, original
software occurring software Enumerate, original
platform occurring platform Enumerate, original
keyword distinct word phases String, derived
relation relating bugs Identifier, derived
category specifying bug category Enumerate, derived

parameter specifying system parameters Enumerate, derived

discussion, attachment, etc. Most of bug features can
be extracted from bug reports. However, BTSs pro-
vide different values for some features. The schema
thus specifies the values of the severity feature as
critical, normal, minor and feature, and the values of
the priority feature as urgent, high, normal and low.
Table IV presents a list of extracted bug features used
to classify bug reports. These features play an important
role in determining the relation of log messages to the
existing bug reports with certain severity and priority
levels. The component, software and platform features
provide the scope of bugs and possibly reveal related or
similar bugs. The category feature specifies which areas
bugs occur, e.g., hardware, software, service, network,
security, etc. The relation feature includes previously
related bugs that are unavailable for some BTSs. The
keyword feature contains the resulting set of distinct
keywords after processing words in the textual features.

Several features in bug reports are infeasible for
training and evaluating classifiers. The data processing
task is therefore important to transform raw data to fea-
sible data for improving the performance of classifiers.
This task includes dropping unnecessary data items,
filling blank data items, re-formatting data features
from various data types to enumerate data type. Firstly,
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Figure 1. A design of two-phase defect detection.

Algorithm 1: Constructing clusters for log messages
Input: Dataset X and number of clusters K
Output: List of centroids M and their data points Y

1 Choose K points randomly as initial centroids
2 Assign each data point to a cluster with its closest centroid
3 Stop the algorithm if the assignment no longer changes
4 Compute the average values of all data points in clusters
5 Update centroids for clusters K
6 Repeat step 2

Return M and Y

the dataset is loaded into panda data frame which
allows data items to be manipulated with ease. Then
the dataset is extracted by necessary features listed in
Table IV. All the features are required to be enumerate.
The content feature usually contains long strings for
describing bugs in details. We use the term frequency–
inverse document frequency (tf×idf) method to obtain
significant keywords for the keyword feature. This
method evaluates the significance of keywords by the
occurrence frequency of the keywords in both bug
reports and the dataset. A distinct group of keywords
contains related keywords with high significance. As
a consequence, the keyword feature includes a set of
keywords and groups that best describe bug reports.
However, since bug reports are obtained from vari-
ous BTSs, their descriptions and discussions contain
redundant words, nonsense words or even meaningless
words, such as: memory address, debug information,
system path, article, etc. We filter out these words from
the dataset.

4 Two-phase Defect Detection

Most previous research activities have applied machine
learning methods for exploiting single datasets includ-
ing either log data, bug data or other specific data. This
approach focuses more on the two-phase defect detec-
tion that follows the workflow of fault management
process:

• Phase 1: filtering and partitioning log messages
into normal, abnormal or unknown clusters

• Phase 2: diagnosing and classifying the abnormal
messages into defect or no defect classes.

Figure 1 depicts a design of two-phase defect detec-

tion. The input data includes various log messages, e.g.,
HDFS log messages in this study are console log mes-
sages with INFO, WARN, ERROR and FATAL severity
levels. Since INFO messages provide less dangerous
information than other messages, this approach filters
INFO message out, eliminates the repeated messages
and processes the remaining messages for applying
K-means clustering and random forest methods. The
input and output of phase 1 is the processed log
messages and the abnormal log messages, respectively.
The input and output of phase 2 is the abnormal log
messages and the detected defects, respectively.

4.1 K-Means Clustering
The K-means clustering method [17] aims to partition

data points into clusters such that data points in the
same cluster share the same features. This unsuper-
vised learning method possesses no knowledge of the
label of data points. Assume the dataset X = [x1, ..., xN ]
of N log messages; each log message presents a vec-
tor xi = [xi1, ..., xid], where d denotes number of the
extracted features of a log message; K < N denotes
number of clusters. This method seeks centroids M =
[m1, ..., mK] and their log messages, e.g., normal, abnor-
mal or unknown labels. Algorithm 1 presents steps to
construct clusters for log messages.

The algorithm starts with K centroids, where each
centroid is a vector of d elements with initially random
values (1). Using the Euclidean distance, each log mes-
sage of d features as a vector is assigned to a cluster
by the closest distance with the cluster’s centroid (2).
The algorithm stops if the assignment of log messages
to clusters no longer changes (3). Otherwise, the algo-
rithm continues to update new centroids for clusters
by computing the average values of all log messages in
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Algorithm 2: Constructing random forest for bug reports
Input: Dataset Y and a threshold σ

Output: Random forest of optimal trees R
1 Divide Y randomly into testing E and training T subsets
2 Use T to build a tree
3 Find the best split for each feature
4 Find the node for the best split
5 Stop if the node generation no longer applies
6 Split the node using its best split
7 Repeat step 3
8 Evaluate the tree with E and σ, then update R
9 Stop if the tree generation no longer applies
10 Repeat step 1

Return R

Algorithm 3: Selecting distinct keywords for log and bug data
Input: Raw keyword set (title, description, discussion, etc.)
Output: Distinct keyword set with weight

1 Load original keyword set
2 Remove frequent or redundant words with stop-word set
3 Reduce inflected words with stemming and lemmatization
4 Remove meaningless words with regular expression
5 Process tf×idf on filtered keyword set
6 Select distinct keywords with high weight

Return Distinct keyword set with weight

the clusters (4&5) and then repeats step 2. The result
is a list of centroids M and sets of log messages Y for
clusters.

4.2 Random Forest
The random forest method [18] aims to classify data

points into classes using a number of decision trees.
This supervised learning method uses the training
dataset to construct several optimal decision trees at
training time and exploits the decision of these trees to
evaluate the realistic dataset. An algorithm of building
decision trees top-down from the root node to leaf
nodes thus plays an important role in this ensemble
tree-based method. Assume the dataset Y = [y1, ..., yM]
of M bug reports; each bug report presents a vector
yi = [yi1, ..., yik], where k denotes number of the ex-
tracted features of a bug report; σ is a threshold for
choosing qualified trees. This method returns random
forest R of optimal trees. Algorithm 2 presents steps to
construct random forest for bug reports.

The algorithm starts with dividing randomly the
dataset Y into the testing E and training T subsets
by a ratio 25% and 75% (1). The training subset T is
used to build a tree (2). The process to grow a tree
contains three steps. The first step is to find the best
split for each feature (3). This step uses entropy splitting
rules to choose the best split among all the possible
splits that consist of possible splits of each feature,
resulting in two subsets of features. Each split depends

on the value of only one feature and the best split
maximizes the defined splitting criterion. The second
step is to find the best split of the node among the
best splits found in the first step (4). The best split also
maximizes the defined splitting criterion. The third step
is to split the node using its best split found in the
second step (6). This process repeats the first step if
the stopping rules are not satisfied. After growing the
tree, the algorithm uses the testing subset E to evaluate
the tree and compare the evaluation result with σ. The
qualified tree is then added to random forest R (8). The
algorithm continues to divide Y and grow several trees
until having sufficient number of qualified decision
trees (9).

4.3 Implementation
We have used python and several libraries sklearn, pan-

das, numpy, etc. to filter and process log and bug data
and implement the K-means clustering and random
forest methods. It is essential to extract features for log
messages and bug reports because the used methods
only accept ordinal categorical, nominal categorical,
or continuous features. However, both log messages
and bug reports contain textual features such as title,
description, or discussion, etc. that hold important in-
formation for mining.

We have applied text processing methods for the
textual features. Algorithm 3 selects distinct keywords
with weight from log messages and bug reports. The
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Figure 2. Statistics of filtered log messages and bug reports.

algorithm starts with loading original keyword set (1),
applies several steps to remove trivial words and correct
inflected words (2, 3, 4), and produces filtered key-
word set. This algorithm then uses the term frequency–
inverse document frequency (tf×idf) method to weigh
filtered keyword set (5) and return distinct keywords
with high weight (6).

5 Evaluation

We have used the HDFS log and BTS bug datasets
to evaluate the proposed approach. The log dataset
contains a large number of INFO log messages and
duplicated messages. After filtering these trivial mes-
sages from total 520 thousands messages, the remaining
dataset possesses 28.6% WARN messages and 3.7%
ERROR messages including 3 FATAL messages. WARN
and ERROR log messages are used to form clusters.
Similarly, the bug dataset contains a large number of
bug reports with minor and feature severity levels.
After filtering these trivial reports from 480 thousands
reports, the remaining dataset possesses 11.2% critical
reports and 39.5% normal reports. Critical and normal
bug reports are used to build random forest. Figure 2
displays filtered log messages and bug reports statis-
tics. The log dataset reports various problems: 75%
of IO exceptions, 20% of general exceptions, 5% of
other problems: creating new image, failing to write to
disk, network connectivity, managing operating system
cache, output error, failing to transfer data, unknown
operation, invalid directory, failing to delete file, etc.

The first phase applies the K-means clustering
method to partition the filtered WARN and ERROR
log messages into normal, abnormal and unknown
clusters. Figure 3 reports numbers of log messages in
the resulting clusters. There are 44, 14 and 10 thousands
totally for normal, abnormal and unknown clusters,
respectively. A large number of 85% WARN messages
are referred to as normal, while a small number of
15% WARN messages are referred to as abnormal or
unknown. Conversely, a large number of 62% ERROR

Figure 3. Numbers of log messages in the resulting clusters.

Figure 4. Performance of the random forest classifier on the abnormal
and unknown datasets.

messages are referred to as abnormal or unknown,
while a small number of 38% ERROR messages are
referred to as normal or unknown. In addition, the
unknown cluster contains 12% of WARN messages and
30% of ERROR messages. These messages cannot be
determined by the method.

The second phase applies the random forest method
on the filtered bug reports and bug features to construct
a random forest classifier with several optimal decision
trees. The classifier is then used to classify the abnormal
and unknown datasets into defect or no defect classes.
Three metrics of Precision, Recall, F1-score are used
for evaluating the performance of the random forest
method, as defined below:

Precision =
Number of true defects detected

Number of true and false defects detected
,

Recall =
Number of true defects detected
Number of all defects detected

,

F1-score =
2 × Precision × Recall

Precision + Recall
.

ERROR messages and a small number of WARN
messages related to system failure are determined as
true defects to computing the metrics. Figure 4 reports
the performance of the random forest classifier on the
abnormal and unknown datasets.

The precision and recall rates of the abnormal dataset
both reach 0.91 as the classifier detects almost ER-
ROR log messages correctly, and also confuses several
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WARN log messages. It is interesting to observe that the
classifier detects some WARN log messages relating to
existing defects correctly. However, the precision and
recall rates of the unknown dataset are lower than that
of the abnormal dataset, i.e., 0.83 and 0.87 respectively.
The first reason is the unknown dataset contains a
large number of WARN log messages and many of
them are not defects. The second reason is several
ERROR log messages in this dataset contain too general
information that confuses the classifier.

6 Conclusion

We have proposed the two-phase defect detection ap-
proach for network and distributed systems. This ap-
proach applies machine learning methods to clustering
and classifying log messages obtained from the systems
in order to seek defects. We have presented the design
of two-phase defect detection, where the first phase
uses the K-means clustering method to partition log
messages into normal, abnormal and unknown clusters;
the second phase uses the random forest method and
bug reports to train a random forest classifier and
determine the abnormal and unknown log messages
whether they are defects or no defects. We have used
realistic HDFS log message and BTS bug report datasets
to evaluate the performance of the proposed approach.
The experimental results have specified some remarks.
The HDFS dataset contains a large number of INFO
messages and duplicated messages, and the BTS dataset
contains a large number of bug reports with feature and
minor severity levels. These messages and reports must
be filtered in advance and several log and bug features
must be supplemented into the lists of extracted fea-
tures. The K-means clustering method partitions 88% of
WARN messages and 70% of ERROR messages into the
normal and abnormal clusters, respectively, and 12% of
WARN messages and 30% of ERROR messages into the
unknown cluster. The random forest method reaches
the F1 score rates of 91% and 86% for the abnormal
and unknown datasets, respectively. Future work fo-
cuses on exploring further log and bug datasets and
exploiting further log and bug features for improving
the performance of the proposed approach.
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