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Abstract– Sign language applications provide an important key to solving communication problems for deaf community
and normal hearing people. Current research problem usually focuses on improving communication access between deaf
and hearing people. In this study, we consider real-time communication context from deaf to hearing people, and thus
we propose an attention-based bidirectional gated recurrent unit (A-BiGRU) model which demonstrates on trading-off
among an precision performance, and computational efficiency which includes training time, testing time, and system
resources on extended the American Sign Language Gloss (E-ASLG-PC12) dataset. The results shown that our proposal has
a significant performance improvement in term of training time, testing time, system resources, comparing to attention-
based bidirectional long-short term memory (A-BiLSTM), and the other moderns of sequence to sequence models. Moreover,
precision performance of our proposal model achieve closer to that of the complex architecture, A-BiLSTM. Thus, we believe
that our proposed model is a suitable and potential candidate for real-time translation applications as well as and lower
computational devices when they solve the communication problems from deaf to normal hearing people direction.

Keywords– computational efficiency (CE), attention-based bidirectional gated recurrent unit (A-BiGRU), sign language
translation applications (SLTA).

1 Introduction

Recently, sign language translation applications (SLTA)
have become an important key to helping deaf commu-
nity and normal hearing people communicate in two
ways and the communication gap can be solved with
the development of sign language translation applica-
tions on smart devices. In order to enable real-time
interaction between deaf and normal hearing people
communicate in two ways, sign language translation
applications will be installed or embedded on smart
devices. By this way, it can bring the translators to
every deaf person to communicate with normal peo-
ple at anytime and anywhere. Though many SLT ap-
plications and researches have been developed many
real-time sign language translators on smart devices,
there are several challenges in current research related
to improvement of automatic sign language produc-
tion (SLP), and thus, it is necessary to doing research
and investigating solutions for the issues.

Advanced studies on sign language translation tasks,
such as SLR and SLP [1]. Key components of the
tasks not only focus on the advanced architecture of
neural machine translation for improving precision
performance but also pay attention on computational
efficiency in terms of training time, testing time, sys-
tem resources, and etc. While SLR [2, 3] focuses on
detecting gestures and recognizing the signs, then con-

vert them to the text form, SLP [4, 5] concentrates
on translating sign language into natural language. In
particle, SLP is a difficult and challenging task, because
producing sign language to spoken language has either
lack of a specific grammar and structure standard or
the target devices may have not strong resources and
datasets to synthesis spoken sentence from sequence of
sign glosses.

The amount of studies on SLP are mainly based on
artificial neural networks (ANN), and recurrent neural
network (RNN) [6], a type of ANN, is widely used to
solve the SLP problems. In RNN, the most significant
important features are hidden states, which allow RNN
simply estimate ahead prediction of small input se-
quence through conditional probability. This explain
the reason why RNN can solve the short sequence text.
In additional, long short-term memory (LSTM) and
gated recurrent unit (RGU) [7], special types of RNN,
can process long sequence text and preserve amount of
information with smaller parameters and lower com-
putational cost. The models are knows as sequence-to-
sequence (seq2seq) models. The most significant im-
portant features of the seq2seq models that they per-
form the SLP tasks efficiently and the performance of
the seq2seq models is better than the other machine
learning models, especially in term of bilingual evalu-
ation understudy (BLUE) score [8, 9]. In [10], a survey
on precision performance for sign language machine
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translation tasks shown that performance of the seq2seq
models are also higher BLEU score than performance
of machine learning–based methods.

Recently, an attention mechanism [11] was born to
solve the long sentence problem for SLTA. Instead of
accessing entire the long sentence, the attention mech-
anism allow seq2seq model pay attention on relevant
information by using an alignment process to compare
source and target. The attention mechanism create a
shortcut to solve fixed length context vector problem
in the traditional seq2seq architecture.

In this study, we propose an attention-based Bi-
directional GRU (A-BiGRU) model to solve the real-
time and computational cost problems for the translat-
ing task, gloss-to-text, for SLP. The main contributions
of this paper are summarized as follows:
• ASLG-PC12 [12] dataset is well known for transla-

tion applications because it is constructed on pairs
of set of English written text (EWT) and set of
American sign language gloss (ASLG). However,
a major bottleneck comes from a lack of parallel
corpus pairs when we map from ASLG to nat-
ural language EWT. We solved the problem by
enriching ASLG, as well as representing corpus
between the sets to meet the specific requirements
for building real-time applications.

• We implemented an BiGRU architecture, where the
first GRU layer processes the input sequences in
forward direction, and the other GRU layer in a
backwards direction for both for encoder decoder.
The architecture, namely BiGRU, allows it capture
and handle long sentences. It is worth to note
that the extension architecture of BiGRU allows
improving precision performance as well as reduc-
ing computational cost when they work with the
attention mechanism.

• We investigated and analyzed performance of our
proposal architecture with the other similar pow-
erful seq2seq architectures, including A-BiLSTM,
BiGRU, and BiLSTM to evaluate performance in
terms of precision, and computational efficiency.
As results, A-BiGRU offers potential trade-off be-
tween the precision performance in BLEU score
and computational cost in training time, testing
time, and system resources.

The rest of the paper is organized as follows: in
section 2, we present theoretical backgrounds of previ-
ous studies related to using datasets, seq2seq models
and AL. Section 3 describes in detail our proposal.
Next, we show the experimental results and discussions
in section 4. Finally, we draw conclusions and future
works in section 5.

2 Related Works

2.1 ASLG-PC12 Dataset

Various aspects of SLT must be considered to solve
translating sign language into a natural language prob-
lems. The first studies was proposed a seq2seq model

for extracting "Gloss" features from video frames to the
corresponding spoken or text with the PHOENIX 2014T
dataset [13] and ASLG-PC12 dataset [12]. The ASLG-
PC12 dataset involves 887710 pairs of EWT and ASLG,
thus, it is the most popular for translation applications.
However, the limitation of data in ASLG comparing to
natural spoken language in EWT may reduce perfor-
mance of seq2seq models. In order to solve the problem,
we enrich ASLG set from various sources, including
Handspeak, StartASL, and Li f eprint [14]. Hence, the ex-
tended glosses are embedded into dataset [12]. On the
other hand, we prepare the best pairs of the sets by pre-
processing steps, then we extract text from EWT into
sentences. Moreover, we remove punctuation marks
and preposition to minimize size of the set. The In
order to keep maximum of information for translating
models, a process of normalization and tokenization
for both sets are proposed, thus we search and merge
the words in the sets if they are widely used. It is
necessary to note that mapping parallel corpus from
the glosses to text may need a grammatical rules to
improve performance of learning models. However, a
basic structure in written English, including subject (S),
verb (V), and object (O) can be represented in different
ways in ASLG, such as, OSV, OVS, SOV, VOS, VSO, and
etc. [15], it may yield amount of parallel data. Hence, we
filtered and kept SVO and OSV formats for ASLG set.
As a result, an extended ASLG-PC12 (E-ASLG-PC12),
including 810000 high parallel corpus can support the
real-time translation task.

2.2 BiLSTM
Long-short term memory (LSTM) architectures are

proposed for long term learning dependence data [7].
Because LSTM can hold information for an extended
period, and thus, it is well-suited for sequential data.
LSTM networks include the chain of memory blocks,
which is called LSTM cells. Each LSTM cell consists of
three gates, which are the input gate, the forget gate,
and the output gate. The “input/update” gate controls
the flow of information and decides what information
is added to LSTM cell. Forget gate allows what infor-
mation will be removed from LSTM cell. The output
gate controls which information will go out of LSTM
cell. The Architecture of the LSTM cell is described in
Figure 1.

Figure 1. The LSTM cell.
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At the time t, the process of LSTM can be expressed
as follows: first, the forget gate ft is computed in
equation (1) which take previous memory ht−1 as an
input. Because of the sigmoid activation function σ, the
outcome of ft is bounded between 0 and 1, thus, if
value of ft is close to 0, it removes the previous state
ht−1 or if value of ft is close to 1, it keeps the previous
state ht−1. Mathematically, the calculation of LSTM cell
can be summarized as follows

ft = σ([Wt ∗ (ht−1, xt] + b f ) (1)

Then, the “input/update” gate it is computed in equa-
tion (2). The outcome value tells the cell which new
information to store in the internal cell state

it = σ(Wt ∗ [ht−1, xt] + bi). (2)

We compute kt, and present the new input:

kt = tanh(Wk ∗ [ht−1, xt] + bk). (3)

Next, the cell state ct is calculated from the forget gate ft
and the previous cell state ct−1. The result is summed
with update state kt

ct = ct−1 ⊙ ft + it ⊙ kt. (4)

Next, output gate ot is computed in equation

ot = σ(Wo ∗ [ht−1, xt] + bo). (5)

Finally, output of LSTM cell ht is computed in equation

f (n) =

{
ot ⊙ tanh(ct) if t > 0
0 if t < 0

. (6)

where, ⊙ is Hadamard multiplication, xt is the input
sequence at the time t, and b f , bi, bk, bo are biases. tanh
and σ are activate functions, respectively.

Bidirectional long-short term memory (BiLSTM) is
a extended version of LSTM. Unlike LSTM, input se-
quences in BiLSTM are transmitted in both directions,
allowing it to use information from both sides. The
architecture of BiLSTM consists of two LSTM that
process input sequences in both forward and backward
directions. The first one receives the input sequences in
one direction, while the other one gets input sequences
in the opposite direction. BiLSTM returns a probability
vector as output, and the final output is a combination
of both of these probabilities in various ways, such
as mean, sum, multiply which can be represented
as follows

pt = p f
t + pb

t , (7)

where, pt, p f
t , and pb

t are the final probability vector of
the network, the probability vector from the forward
LSTM network and the probability vector from the
backward LSTM network. The architecture of BiLSTM
are presented in Figure 2.

2.3 BiGRU

GRU is an advanced model which introduced as an
alternative method to learn patterns from sequential
data [7]. The GRU model has the same design concept

Figure 2. The architecture of BiLSTM.

as the LSTM model but it has simple architecture of cell
where it only has an update gate and a reset gate as
shown in Figure 3. This helps it focuses on filtering
unimportant information and organizing the flow of
information efficiently. Moreover, the simplified archi-
tecture makes it enable in computing. The amount of
information received is essentially determined at each
time step, so the GRU is capable of remembering time
patterns over a longer period of time than other models.

Figure 3. The GRU cell.

Figure 4. The architecture of BiGRU.

GRU consists of two types of gates, including update
gate and reset gate. The update gate decides to keep
and let information through it. It takes the current
input xt at the each time step and the hidden state
of the previous ht−1 to produce outputs as a value
either between 0 and 1. on the other hand, the reset
gate responsible for controlling the past information
s relevant to the computation of the current output.
Like update gate, it takes the input xt and the previous
hidden state ht−1 to produce outputs as a value between
0 and 1. Mathematically, the calculation of GRU cell can
be summarized as follows:
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zt = σ([Wz ∗ (ht−1, xt] + bz), (8)

rt = σ(Wr ∗ [ht−1, xt] + br), (9)

ĥt = tanh(Wh ∗ [tt ⊙ ht−1] + bh), (10)

ht = (1− zt)⊙ ht−1 + zt ⊙ ĥt, (11)

where, Wz, Wr, and Wh are the weighted matrices, and
bz, br, and bh are the bias. ⊙ is Hadamard multiplication.
The sigmoid activation function is specified by σ and it is
used to calculate the update gate from equation (8) and
the reset gate from equation (9). The sigmoid activation
function to be in the range [0,1]. If the output from the
sigmoid function is 1, we do not use past information,
whereas if the output is 0, then, only new information
is kept. On the other hand, if the value of the reset gate
is 0, we do not use the previous value to calculating ht,
and if the value of the reset gate is 1, we use the
previous value for the calculating ht.

BiGRU, a variant of GRU, is designed with two GRU
units running in parallel. Each GRU unit processes
data in a separate direction. the first one forwards and
the other one reverses. This allows BiGRU to capture
information from both sides of the sequential data
and information, thereby the architecture can improve
accuracy. Moreover, the structure of BiGRU can connect
the forward hidden layer and the backward hidden
layer to the same output, thus it fully extracts the
temporal characteristics of the language data sequence.
The architecture of BiGRU are described in Figure 4.
Mathematically, the computing of the backward hidden
layer can be summarized as follows:

−→
h = ϕ(W f

xh ∗ xt + W f
hh ∗
−→
h (t−1) + b f

h), (12)
←−
h = ϕ(Wb

xh ∗ xt + Wb
hh ∗
−→
h (t−1) + bb

h), (13)

ht = [
−→
h ;
←−
h ], (14)

where, the hidden states of the forward and backward
layers can be represented as

−→
h and,

←−
h , respectively.

[;] denotes the merging of hidden states of the forward
and backward layers.

2.4 Attention Mechanisms

The attention mechanism is a best way to enhance
the performance of seq2seq architecture. In general, the
attention mechanism is located between the encoder
layer and the decoder layer, and the first goal of the
attention mechanism is to align the hidden state of
the encoder and decoder in RNN. Recently, the atten-
tion mechanism has been proposed by Bahdanau et
al. [11]. As illustrated in Figure 5, context vector Zt,
t ∈ (1, 2, ..., n), depends on a sequence of (h1,h2,...,hn)
and hidden status st−1. Mathematically, it can be calcu-
lated as follows

Zt = Σn
j=1stj ∗ hj. (15)

At each time step, weight stj of each hj is calculated by
equation (16) as follows

stj =
exp(dtj)

Σn
k=1exp(dtk)

, (16)

where, djt = a(st−1, hj) is an alignment model that
shows the degree of correspondence between inputs in
position j and output in position t− 1. By calculating
attention weights at every time, the attention mech-
anism can computer a separate context vector. Thus,
the attention mechanism enables to pay attention on
relevant information and ignore the other information.

In [16], attention scores are computed by Luong et
al., the attention scores of the work are different to
the previous work because they measure the attention
scores by using multiplicative attention directly. The
attentions cores are express as follows:

djt = hn
j ∗ st−1, (17)

djt = hn
j ∗Wn

m ∗ st−1, (18)

djt = Wn
α tanh(Wh ∗ hj + Uh ∗ st−1), (19)

where, Wα, Wh, Wm, and Uh are weight parameters.
In order to trade-off between the BLEU score and

system resources, we implement the first one in our
proposed model.

Figure 5. The architecture of attention mechanism.

3 Methodology

3.1 Study Approach
In order to study on gloss to text translation in SLP,

we applied the powerful seq2seq models to show how
to implement the approach to real-time sign language
translation applications. First, We investigate and ana-
lyze performance of A-BiGRU. Then, we compare our
proposal with the other models in term of BLEU score,
training time Tr(S), testing time Te(s), and system
resources Re(GB). The other models include BiLSTM,
BiGRU, and A-BiLSTM. As shown in Figure 6, a study
on the gloss to text architecture is investigated. The
encoder layer has input vectors xt−2, xt−1, xt, and xt+1.
At each time step t, encoder output, vector Zt, is passed
to decoder layer. The context vector is calculated in
equation (15) and it is used with the previous hidden
state st−1 of the decoder to compute the new hidden
state st and output yt. It is worth to note that all
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Figure 6. The investigated gloss to text architecture.

the mathematical equations for the models with the
attention mechanism have been solved in [11].

The investigated models, including BiLSTM, BiGRU,
A-BiLSTM, and A-BiGRU, have been described in pre-
vious sections, where either the LSTM cell or GRU
cell is configured as the core component. In general,
there are many activation functions such as ReLU, tanh,
sigmoid, and etc., may use for the models as well as
variant type of attention mechanisms [11, 16] have
been introduced to the attention layer. Because we are
looking for a simple architecture where computational
efficiency as well as BLEU score are taken into ac-
count. Therefore, we implemented a model based on
BiGRU architecture and the attention mechanism [11]
to achieve both computational efficiency as well as
BLEU score.

3.2 Metrics
The BLEU [8, 9] is a metric for measurement of the

different between predicted translation of sentence to
references of sentences. Thus, it is used to evaluate
machine translation systems. Traditionally, BLEU score
has a translation scale of 0 to 1, while the score closes
to 1 means that the translated sentence is exactly the
same as the reference sentence, the score closes to 0
means that the translated sentence is different to refer-
ence sentence. In general, the BLEU score is expressed
on a scale of 1 to 100 and it uses multiple of precision
scores of n-gram (n = 1, 2, 3, 4). Mathematically, the
BLEU score are calculated as follows

BLEU = min(1,
lcandidate
lre f erence

)Π4
n=1(pi)

1
4 , (20)

where, lcandidate and lre f erence are the length of translated
sentence and the length of reference sentences, and pi is
the n-gram precision where n is up to a maximum order
of four. The precision metric measures the number of

words in the candidate sentence that also occur in the
reference sentences.

4 Experimental Results and Evaluations

4.1 Experimental Environment
In this study, we used Google Colab Pro as the

primary environment for model training. It offers a
Tesla T4 GPU with 16GB of VRAM, along with a fast
Intel(R) Xeon(R) CPU that speeds up the model training
process. All deep learning methods are implemented
using Python language version 3.10.7, Tensorflow li-
brary version 2.3.1, and Keras version 2.4.3. In order to
investigate and analyze performance of A-BiGRU, the
E-ASLG-PC12 dataset is divided in two parts which 80
percents were used for training, and the remaining 20
percents were used to test translation results. To exam-
ine the models, We use the categorical cross− entropy
function to optimize the model to predict the proba-
bility distribution. Regularization are proposed in the
study to retaining part of the training data for the test
set. We chose a batch size of 128 during training to
optimize GPU memory usage while ensuring model
accuracy. The training was conducted over 200 epochs.

4.2 Experimental Results and Discussions
As shown in Table I, few translation results of A-

BiGRU are presented. There are several parameters
that refer to 1) ground truth (ground tru.) is the truth
sequence text that can be used to compare with out-
come, 2) gloss sequences (gloss seque.) is a sequence
of glosses than can be translated to sequence text,
and 3) translation as target outcome of the model. The
sample tests in Table I shown that mapping among
gloss sequence, ground truth and outcome of proposed
model is highly match to original data.

While the model can reconstruct the simple context,
the complex grammatical structure must be investi-
gated. Intuitively, the gloss to text translations not only
base on architecture of models but also depend on
ground truth where variety and available datasets can
give close meaning for translating. Larger and more
available datasets enable the algorithms as well as
impact on the performance of models.

Precision performance and computational cost are
the core issues of the work. In the first one, BLUE scores
of of BiLSTM, BiGRU, A-BiLSTM, and A-BiGRU are
investigated. It is worth to noted that the higher BLUE
score value, the better translation quality. As show in
table II, The BLUE score of A-BiGRU is significant
better than BiLSTM and BiGRU but it is slight lower
than A-BiLSTM. It means that the attention mechanism
allows our proposed model to pay more attention to
the relevant information and words in long sentences,
and hence improve the BLUE score. Because A-BiGRU
has a simpler architecture than A-BiLSTM, the explain
that BiGRU is slight lower BLUE score than A-BiLSTM.

However, a simpler architecture, which can make A-
BiGRU faster to train and test, as well as less com-
putational cost. As shown in Table II, training time
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Table I
Samples of Text to Gloss A-BiGRU Model with E-ASLG-PC12

Dataset

Parameters The generated output samples
gloss sqe. BATH NEED YOU

ground tru. you need to take a bath
translation you need to take a bath
gloss sqe. LONG SEE NO HOW YOU

ground tru. long time no see you been doing time
translation long time no see you been doing time
gloss sqe. YOU WORK WHERE

ground tru. where do you work?
translation where do you work?
gloss sqe. YOUR NEW CAR COLOR WHAT

ground true what color is your new car?
translation what color is your new car?

Table II
Performance of Investigated Models

Models BLEU Tr Re Te Wgt
BiGRU 37.52 1215 2.4 30 14.7
BiLSTM 38.26 1533s 3.0 35 15.8

A-BiLSTM 46.34 1948 4.2 67 16.8
A-BiGRU 45.63 1662 3.7 55 15.8

Tr(seconds), system resources Re(Gigabyte), and time for
testing samples Te(seconds) of A-BiGRU achieved sig-
nificant improvement. Especially, both time for testing
samples and training time of A-BiGRU are significant
reduced, comparing to A-BiLSTM. In order to support
fully for the core idea that the fewer weights (Wgt)
are produced, the training and testing time will be im-
proved. We also present comparison the Wgt(Millions)
among the models in Table II.

In order to show overall performance comparison
among the models, we visualize the comparisons in
Figure 7, where system resources Re(Gigabyte) and the
BLEU score of each model is evaluated in separate pre-
sentation. It is worth to note that overall performance
of each model can be observed the gaps related to
BLEU scores and computational efficiency, and thus, a
complete evaluation of performance could be drawn.
For our purpose, the simple architecture, A-BiGRU,
make it overall better than the other models. The re-
sults are meaning to practical applications of machine
translation.

4.3 Android Applications
In order to test our proposed model, A-BiGRU, a

prototype of real-time translation application is gener-
ated. Because we just test how does it work and does it
provide real-time capabilities, We focus on effectively
real-time translator. However, it can provide graphic
user interface so that we can receive real-time feedback
performance in several scenarios.

5 Conclusion and Future Works

In this study, we presented and compared the perfor-
mance of seq2seq models, including BiGRU, BiLSTM,

Figure 7. Comparison with the state of the art.

Figure 8. SLTA on Android.

A-BiLSTM, and A-BiGRU. In particular, we focus on
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the A-BiLSTM and A-BiGRU to find out the best so-
lutions for real-time translations applications. Experi-
mental results shown that A-BiGRU has simpler archi-
tecture than A-BiLSTM and it can handle significant
improvement than A-BiLSTM in terms of training time
Tr(Seconds), system resources Re(Gigabyte) , and time for
testing samples Te(Seconds), while still providing nearly
the same BLEU score comparing to A-BiLSTM. Thereby,
it has the potential to be integrated into real-time sign
language translation applications.

In the future works, it is worth to noted that a
proposed model must be observed the gaps, which are
important features to improve overall models for real-
time applications and thus, we will still focus on the
simple architecture of models with suitable datasets
to provide the best alternative for improving real-time
sign language translation applications.
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