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Abstract- The Internet is undergoing a revolution thanks to the development of a very popular recent technology trend -
“Cloud Computing”. Various organizations as well as individuals increasingly prefer to use cloud computing services due
to their advantages. Furthermore, the widespread implementation of cloud computing in large enterprises is an indicator
of the technological advancement of information technology companies. It helps in the efficient allocation and utilization
of infrastructure, power, and resources. In the meantime, centralized control provided by a Software-Defined Network
(SDN) allows for flexibility in operations and management. For that reason, there has been an adequate amount of research
and application of combining these two objects over the years. In this study, we will carry out the integration of the
OpenStack platform with an SDN controller called Tungsten Fabric. Then we will evaluate network performance between
virtual machines in terms of throughput, latency, and system utilization in terms of CPU and RAM in OpenStack with and
without Tungsten Fabric.

Keywords— Software-defined network, cloud computing, openstack, tungsten fabric, system performance, network perfor-

mance, monitoring.

1 INTRODUCTION

Cloud Computing has transformed the landscape of In-
formation Technology infrastructure management, with
OpenStack emerging as a preferred open-source plat-
form for deploying private and public clouds [1, 2].
OpenStack has different components that take on dif-
ferent roles; Neutron is the network component of
OpenStack [3]. As cloud networks become increasingly
complex, there is a growing need for efficient network
management solutions that can optimize performance
and enhance network agility.

Software-Defined Networking has emerged as a
promising paradigm to address many challenges. By
decoupling the network control plane from the data
plane [4] SDN provides centralized control and pro-
grammability, allowing administrators to manage net-
works effectively, improve resource utilization, and en-
hance overall network performance. The SDN network
architecture consists of three distinct layers: the appli-
cation layer, the control layer, and the infrastructure
layer [5]. The application layer encompasses the nec-
essary applications and functions for the network. It
connects to the control layer via the north API inter-
face [6], which enables SDN to integrate with other
technologies. Additionally, Tungsten Fabric (formerly
known as OpenContrail) is a popular and powerful
SDN controller used in network virtualization and net-
work control in cloud environments [7].

Integrating an SDN controller with the Open-

Stack cloud platform can further enhance its capa-
bilities, enabling control and automation of network
resources [8, 9]. OpenStack Neutron provides a Neu-
tron networking plugin which allows it to integrate
with different SDN controllers [10]. In this context, the
Tungsten Fabric SDN controller has gained popularity
for its robust features and scalability. Tungsten Fabric
provides a flexible and extensible platform for manag-
ing and orchestrating network services in OpenStack
environments.

The idea behind this research is to evaluate the
network efficiency and system utilization of the Tung-
sten Fabric SDN controller integrated with the Open-
Stack cloud platform and compare it with the standard
OpenStack networking model. By conducting a com-
prehensive performance analysis, we seek to highlight
the benefits and drawbacks of leveraging the Tungsten
Fabric SDN controller in an OpenStack environment.

The remaining sections of this article are organized as
follows: Section 2 provides an overview of the related
works and our contribution. In section 3, we provide
basic knowledge about OpenStack and Tungsten Fabric.
In Section 4, we present the system model for inte-
grating the Tungsten Fabric controller with OpenStack.
Section 5 focuses on evaluating and analyzing the
performance of the system, along with the presentation
of implementation results. Finally, in Section 6, we
draw conclusions based on our findings and discuss
the future directions for further work.

1859-378X-2024-0205 © 2024 REV



M.-T.-T. Dinh et al.: Performance Evaluation of OpenStack Cloud Integrated with SDN Controller 37

2 RELATED WORK

Multiple research studies have focused on enhancing
network infrastructure by integrating OpenStack and
SDN controllers. The authors of the article [11] focused
on the GRE Tunnel model in Neutron, which is a
key component of OpenStack. Measures of network
performance between virtual machines include packet
loss rate, packet transfer latency, and throughput. The
experimental model includes three servers: one server
acts as Controller, and the remaining two servers act
as Compute nodes. The authors provide the following
scenarios for evaluation using the IPERF tool: i) Virtual
machines are located on the same network, same com-
pute node, ii) different networks, same compute node,
iii) same network, different compute node, and iv)
different network, different compute node. The study’s
findings indicate that the location within the compute
node and the established network range directly impact
on the network performance between virtual machines.

With the same scenarios as the study mentioned
above, the author in [12] performs a thorough evalu-
ation of every aspect of network performance between
virtual machines and the overall OpenStack system
performance. Depending on the purpose of each type,
the following tools are used in the article: tcpdump,
Wireshark, top, atop, atopsar, PING, and IPERF. The
model is tested on real environments (with physical
servers) and virtual environments (using AWS EC2
services). The results provide us with a summary of
OpenStack’s functionality in various scenarios. When
having direct impact to the Linux kernel, the ob-
tained network performance results demonstrate that
KVM/VHostnet is also a factor that significantly affects
network performance. Furthermore, the enabling mode
of DVR (Distributed Virtual Router) on each compute
node enhances traffic routing capabilities.

The research team in [13] analyzed network per-
formance through three separate models: Standard
OpenStack (evaluated through OpenStack’s Neutron),
OpenStack when enabling the Distributed Virtual
Router (DVR) function on Compute nodes, and Open-
Stack integrated with OpenDaylight SDN controller.
Work is performed with packets of various sizes, such
as TCP packets with 65,535 bits or UDP packets with
128, 1024, and 4096 bits. The authors’ scenario involves
assessing the capacity to deliver on Layer 2 (Layer 2
communication) and route on Layer 3 (Layer 3 routing)
using both fixed and floating IP addresses with the
help of the VMTP tool. Furthermore, these authors
concentrate on virtual machines that are independent
of one another and the same virtual network, whether
they are on the same or separate nodes. The results
obtained indicate that when using floating IP, DVR
becomes the better option in terms of throughput on
layer 3, while the OpenDaylight controller performs
better with fixed IP.

In [14], the authors compare two SDN controllers,
OpenDaylight and Open Kilda inside an OpenStack
infrastructure. They evaluate several aspects of the
system, such as throughput, latency, CPU utilization,

round trip time, and topology change detection time
while increasing the number of hosts and switches
using Mininet. However, a limitation of this paper is
that the SDN controllers were only deployed within
the virtual machine of the OpenStack architecture in-
stead of being integrated in parallel with the entire
OpenStack system. As a result, the controllers could
only monitor the virtual machine in which they were
installed, rather than the entire OpenStack system. The
paper also utilizes useful tools like OFNet and CBench
for evaluating the system’s performance.

The authors in [15] evaluate the network performance
of two SDN controllers: ONOS and Floodlight based
on TCP and UDP traffic. By using Mininet, authors
create different SDN network topologies (single, linear,
and tree) to measure transfer delay, throughput, and
jitter. The IPERF tool is used to generate the TCP and
UDP traffic. The result shows that ONOS controllers
show better network performance than Floodlight in
both TCP and UDP traffic. With the same method,
the research team in [16] also presented the network
efficiency of Ryu and Floodlight controllers in single,
linear, tree, torus, and custom topology and pointed
out that the Ryu controller has better performance than
Floodlight. In addition, using the same scenario as
before (and some additional test models), the author
in [17] compared the performance of two Java language-
based controllers, OpenDaylight and ONOS. The find-
ings indicate ONOS controller performs better than
the OpenDaylight controller in the testing environment
they deployed. However, these researches evaluate the
network performance of SDN controllers in the Mininet
environment, not the OpenStack system which is inte-
grated with the SDN controller.

In [18], the authors monitored the OpenStack Cloud
system using Prometheus. They installed a node-
exporter on each node to collect system data. The
unique aspect of this article is the installation of an
OpenStack-exporter on the controller node to collect
data from the entire OpenStack cloud platform. The
OpenStack-exporter parameter function includes moni-
toring RAM, vCPU, CPU statistics, disk, instances, and
so on. It is far from node-exporter which takes data
from the system on which OpenStack is installed. The
collected data is transferred to Prometheus and dis-
played using Grafana. With the same standard Open-
Stack, the author in [19] evaluates the delay time to pro-
cess the system operation when increasing the number
of Compute nodes.

The authors in [20] evaluate network solutions per-
formance for OpenStack, especially connecting the con-
troller with Neutron via plug-ins to facilitate com-
munication between them. OpenDaylight, Ryu, Flood-
light, and Linux-bridge (a non-controller solution) are
implemented. The scenarios provided include average
packet transmission delay, TCP flows that may transmit
for more than one second, and the maximum number
of UDP packets shown while utilizing various paral-
lel sections. Floodlight, Ryu, and the standard option
(Linux bridge) outperform OpenDaylight in delay time
and maximum data throughput. Nonetheless, Open-
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Daylight demonstrated a high degree of self-healing,
making it more reliable than Ryu and Floodlight.

In this research, at first, we build an integrated struc-
ture of OpenStack Cloud platform and Tungsten Fabric
controller, in which, the controller is set up in a control
node and able to manage other nodes in the OpenStack.
Then, we evaluate the network and system performance
of the OpenStack Cloud platform with and without the
Tungsten Fabric controller. For networking, we focus
on the ICMP, and TCP, UDP data streams generated
between virtual machines in an OpenStack environ-
ment using the PING and IPERF tools, respectively.
We assess several key performance metrics, including
latency, and throughput, to gain insights into the im-
pact of Tungsten Fabric on network performance. For
system utilization, we use Prometheus and Grafana to
monitor the system and evaluate the RAM and CPU
of the system. By analyzing the collected metrics, we
provide insights into the scalability and efficiency of
Tungsten Fabric in managing network resources within
an OpenStack environment. Our research will enable
cloud administrators and network engineers to make
informed decisions about adopting the Tungsten Fabric
SDN controller in their OpenStack environments.

3 Basic KNOWLEDGE

OpenStack, a well-known open-source cloud comput-
ing platform, provides a comprehensive infrastructure-
as-a-service (IaaS) solution. OpenStack, which was cre-
ated to manage and orchestrate various cloud re-
sources, gives enterprises the flexibility to build and
manage private and public cloud environments. As
shown in Figure 1, OpenStack architecture includes
components such as Nova for compute resources, Swift
for object storage, Neutron for networking, and so
on. OpenStack’s scalability, and flexibility have led to
its widespread adoption in various sectors, enabling
efficient cloud management and provisioning while
promoting cooperative innovation within the current
rapidly growing cloud computing landscape.

OpenStack Core Components
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Figure 1. OpenStack components.

Tungsten Fabric is an open-source SDN solution that
provides network virtualization and automation capa-
bilities. Previously named OpenContrail, it is currently
a component of the Linux Foundation’s Networking
project. As illustrated in Figure 2, Tungsten Fabric
architecture can be divided into the control plane and
data plane. Control plane components include Con-
fig, Control, and Analytics. Data plane components

include vRouter and its agents. The Tungsten Fabric
SDN controller uses various protocols and interfaces to
communicate with network devices, such as switches,
routers, and virtual network functions (VNFs). It lever-
ages standard protocols like Border Gateway Protocol
(BGP), OpenvSwitch Database (OVSDB), and Network
Configuration Protocol (NETCONF) to exchange infor-
mation and control the network elements.
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Figure 2. Tungsten Fabric controller architecture.

4 SysTEM MODEL

4.1 Networking in Standard OpenStack - Neutron

Figure 3 shows a network model in a standard
OpenStack system. Neutron Server connects to Open-
vSwitch utilizing the ML2 plugin (OpenvSwitch Mech-
anism Driver) and the Neutron OpenvSwitch Agent.
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OpenvSwitch
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Figure 3. Networking in OpenStack system [21].
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The OpenvSwitch driver creates a specific message and
sends it to the Neutron OpenvSwitch agent on the
specified Compute Node. The agent at the Compute
Node interacts with the OpenvSwitch to program it
according to the command received [21]. Last but not
least, virtual machines are managed by OpenvSwitch.
Figure 4 shows how OpenvSwitch (OvS) processes a
packet between virtual machines in OpenStack.
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Figure 4. Packet transmitting between VMs using OpenvSwitch.

In the case of two VMs (virtual machines) sharing the
same network range, if they are on the same node, the
packet from VM1 to VM2 (both on Compute Node 1
and in the virtual network 1 range) proceeds as follows:
The VM1 interface routes the packet to the Linux
bridge port via veth pair. After that, the bridge handles
the packet’s firewalling and connection tracking before
forwarding it (by port qub) to the OvS integration bridge
port quo (on the left) via a veth pair. The OvS integration
bridge port quo (placed on the right) routes the packet
to the Linux bridge port qub via the veth pair. Finally, the
bridge performs firewalling and connection tracking for
the packet before forwarding it to the VM2 interface.
On the other hand, if two VMs are on separate nodes,
the packet from VM1 in Compute Node 1 to VM3 in
Compute Node 2 (both with virtual network 1) will go
as follows: Similarly, suppose two VMs are placed in
the same node and network range, but when the OvS
integration bridge gets the packet, it adds an internal
VLAN tag to it and then swaps the internal VLAN tag
for an internal tunnel ID. The OvS integration bridge
patch-tun patch port routes the packet to the OvS tunnel
bridge patch-int patch port, and the bridge then wraps
the packet in VNI 1 (Virtual Network Infrastructure 1).
The underlying interface for overlay networks routes
the packet to the OvS tunnel bridge in the destination
node (Compute Node 2) via the overlay network. The
packet will be processed in reverse order by Compute
Node 2 first and then sent to VM3 where it resides.

In the case of two VMs having different network
ranges, if they are located in the same node, the packet
from VM3 (which has virtual network 1) to VM4
(which has virtual network 2) (both on Compute Node
2) proceeds as follows: Because the packets must be

carried over two separate network ranges, they must
be routed to their intended destination. After VM3's
packet has been processed by Compute Node 2, it
will be transmitted to the Control Node. The packet
is processed similarly by OvS components as in the
Compute Nodes and routed to the network 1 interface
in the router namespace. The router routes the packet to
the next-hop IP address, which is usually the gateway
IP address on network 2. The packet is routed to the
OVS integration bridge port for network 2. The packet
is then handled in the reverse process and sent to VM4.
However, if these two VMs are on different nodes,
the packet will be treated identically, but instead of
being delivered to the same node, it will be routed
to another node and processed in the same manner
as VMs situated in the same node and in different
network ranges.

4.2 Networking in OpenStack Integrated with
Tungsten Fabric
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Figure 5. Networking in OpenStack combined Tungsten Fabric sys-
tem.

In the integration system shown in Figure 5, two
primary components connect the Neutron server to the
Tungsten Fabric controller. The first is the ML2 plu-
gin, which uses the OpenContrail Mechanism Driver.
Secondly, North API, which not only is an agent of
Tungsten Fabric namely Config, but also a crucial part
that manages nearly all controller functions. Because
it is used for communication in addition to the South
API'’s existence (which is utilized by the Device Man-
ager), the North API of the controller is extremely
significant [22]. The controller manages all API calls
sent to itself or sent to Neutron via this connection.
Additionally, sending configuration or network rules
to vRouters is the responsibility of the other Tungsten
Fabric’s component namely Control. They use XMPP, or
Extended Messaging and Presence Protocol, to talk to
one another [23]. Finally, virtual machines are managed
by vRouters. Figure 6 shows how vRouter processes a
packet between VMs in the integration system.

For an OpenStack system with the Tungsten Fabric
controller, considering the case of two VMs (virtual
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Figure 6. Packet transmitting between VMs using vRouter.

machines) placed in the same network and the same
node here being Computing Node 1, we only need
one VRF (Virtual Routing and Forwarding), which is
VRF1 (VRF will be used when the virtual Network is
created, so there will be as many virtual Networks as
VRFs). When VM1 transmits a packet to VM2, if it is
the first packet, it will look for VM2’s IP address by
making a DNS request to the DNS server received via
DHCP and getting a response with the IP address. To
get the MAC address, VM1 makes an ARP request to
the vRouter Forwarder, which retrieves VM2’s MAC
address from its forwarding tables and encapsulates
it in the Ethernet frame that will be sent to VM2.
Once VM1 has VM2’s IP and MAC addresses, further
packets are routed continuously and seamlessly using
the vRouter Forwarder methods. Following that, the
forwarder decapsulates the packet and searches up the
MPLS label to determine which virtual interface should
deliver the original Ethernet frame. The Ethernet frame
is sent across the interface and received by VM2.

If two VMs are on separate networks but on the same
node (Compute Node 2), assume that VM3 uses VRF1
and VM2 uses VRF2. VM3 connects to the vRouter For-
warder, which serves as the default gateway. Initially,
VM3 delivers messages enclosed in an Ethernet frame
that includes the default gateway’s MAC address. The
vRouter Forwarder replies to an ARP request for the
gateway IP with its own MAC address. VM3 then
transmits packets with this gateway MAC, and the
vRouter Forwarder uses the packet’s destination IP to
search its forwarding table in the VRF for the right
route, which is usually via an encapsulation tunnel to
the target host.

In both circumstances, whether sharing the same
network or different networks, if the two VMs are on
separate nodes, the vRouter Forwarder at the desti-
nation node will unwrap and handle the packet as
described above. However, before being delivered to the
target vRouter Forwarder, the packet must first pass
via a virtual interface known as vhost0. It is noticeable
that the vRouter agent maintains a connection with
the controller and receives information about the VRFs,
routes, and ACLs (Access Control Lists) it requires.
The agent keeps the information in its database and
configures the forwarder based on the data received
from the Tungsten Fabric’s element named Control.

5 IMPLEMENTATION AND RESULTS

5.1 Implementation

Following a successful deployment, we will test the
network performance in this section and statistically
examine how much RAM and CPU the server utilized
to assess system performance. First and foremost, we
subsequently generated numerous virtual machines on
each Compute node, wherein these virtual machines
operated on the Ubuntu 20.04 OS and were designated
to particular network ranges. The deployment model of
this study consists of three virtual servers rented from
a cloud Service Provider, set up with one as a Control
Node and two as Compute Nodes. These three virtual
servers are connected to the virtual network, also called
“Virtual Private Cloud” (provided by the Cloud Ser-
vice Provider) via each virtual server’s interface. One
striking feature is that this virtual network limits the
bandwidth between these virtual servers, specifically
below 1000 Mbps.

5.1.1 Measuring network performance: Due to the fact
that OpenStack’s network and network services are
resources and have been completely virtualized for ease
of use and management; theoretically, they function
exactly like actual networks, they have virtual ports,
virtual routers, virtual local area networks, and other
elements that are similar to real network systems. Con-
sequently, we have to look at the network connectivity
both within and between compute nodes in order to
assess network performance between virtual machines.

In each scenario of network setup, two of the previ-
ously generated VMs (virtual machines) are selected at
random, one entity functions in the role of the sender,
while the other entity assumes the role of the receiver,
aiming to assess the ability to transmit and receive
data packets between them by considering factors like
Throughput and Latency. In scenarios 1 and 2, the
bandwidth is not limited, and the node will automati-
cally handle the transmission and reception of packets
between two VMs because they are located on the same
node. But in scenarios 3 and 4, the bandwidth is limited
to 1000 Mbps, leading to the bandwidth from node to
router in these scenarios being limited to 1000 Mbps,
moreover, only one node is responsible for sending the
packet since it is the node where the VMs initiating the
data transfer are located.

We utilize the IPERF tool to assess throughput across
virtual machines for both TCP and UDP packets.
IPERF’s operational mechanism involves a single pro-
cess without any parallel mode. It establishes a stream
from the client to the server and assesses performance
outcomes based on that stream. To get the best results,
run the software for 5 minutes, rerun it 5 times, and
average the results. In terms of latency, we utilize the
PING tool to measure the transmission and reception
timings of ICMP packets in 10 seconds, which is then
repeated five times.

5.1.2 Measuring RAM and CPU utilization: As illus-
trated in Figure 7, our system consists of one Control
Node and two Compute Nodes. The Control Node is
equipped with 32 GB of RAM while each Compute
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Node has 12 GB of RAM. Node-exporter is set up in
Control Node and one Compute Node and they will
export the system’s data into Prometheus set up in
a Ubuntu machine; additionally, Grafana is used to
observe the data. During system deployment, we will
assess the RAM and CPU utilization of the Control
Node and one of the Compute Nodes (because the
other Compute Node has the same specifications) when
creating one virtual machine within the system and
when conducting four different scenarios.

Monitor node

Prometheus

Control Node 32GB RAM

Node-exporter

Compute Compute
Node 1 EZERE Node 2

Node-exporter Mode-exporter

12GB RAM

A

Figure 7. Monitoring system diagram.

5.1.3 Scenarios for evaluating: We propose four scenar-
ios for testing network performance as follows:

Scenario 1: This test model is used to look into the
latency and throughput between two virtual machines
running on the same network node. Two virtual ma-
chines from Compute Node 1 that are situated within
the address range 10.0.0.0/24 will be chosen for assess-
ment.
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Figure 8. Scenario 1: Same node, same network.

Scenario 2: This test model is used to look into
latency and throughput between two virtual machines
that are situated on the same node but in two sepa-
rate networks. Two virtual machines, 10.10.10.0/24 and
10.0.0.0/24, with different address ranges on the same
Compute node 1 will be chosen for assessment.
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Figure 9. Scenario 2: Same node, different network.

Scenario 3: This test model is used to look into
latency and throughput between two virtual machines

that are situated at separate compute nodes but within
the same network range. For evaluation, we will select
any machine from Compute Node 1 and any ma-
chine from Compute Node 2. The network range of
10.0.0.0/24 is used by both machines.
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Figure 10. Scenario 3: Different node, same network.

Scenario 4: This test model is used to look into the
latency and throughput between two virtual machines
that exist across two distinct compute nodes and two
distinct network ranges. For evaluation, we will choose
any machine at Compute node 1, which is situated in
the range 10.0.0.0/24, and any machine at Compute
node 2, which is situated in the range 10.10.10.0/24.
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Figure 11. Scenario 4: Different node, different network.

5.2 Results

5.2.1 Network Performance: a) Throughput

TCP throughput: We can observe that when Tungsten
Fabric is integrated with OpenStack, the TCP through-
put is significantly higher than when it is not integrated
(Figure 12) since the virtual machines are located on the
same Compute Node.

TCP throughput (Mbps) - Same node TCP throughput (Mbps) - Same node

..... Zoom in

1000
| I I I
00
10000
- I I

Scenario 1 Scenario 2 Scenario 1 Scenario 2
W OpenStack W OpenStack with integration of Tungsten Fabric

Figure 12. TCP throughput between virtual machines in the same
node.

As previously indicated, we license three "virtual
servers" for our implementation, and there is a 1000
Mbps bandwidth limitation between the servers. When
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OpenStack and Tungsten Fabric are integrated, a very
impressive 900 Mbps of TCP throughput is obtained;
in contrast, when no integration occurs, results range
from 200 Mbps to 300 Mbps (Figure 13). The Tungsten
Fabric controller improves OpenStack’s efficiency and
network performance between virtual machines on dif-
ferent nodes.
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Figure 13. TCP throughput between virtual machines in different
nodes.

Similar to TCP throughput, UDP throughput gained
by integrated OpenStack with Tungsten Fabric is sig-
nificantly higher than when not integrated (Figure 14
15). Although the UDP throughput of the integrated
system is lower than that of TCP in all four scenarios,
it still outperforms the standard OpenStack system
significantly, even when the bandwidth is limited to
1000 Mbps in scenarios 3 and 4. These outstanding
results highlight the significant potential of the Tung-
sten Fabric controller in addressing and mitigating the
limitations imposed by bandwidth constraints. This
controller has the capability to facilitate enhanced band-
width utilization, enabling virtual machines to achieve
the maximum level of throughput allowed by the un-
derlying hardware. This holds true whether the virtual
machines are located on the same node or separate
nodes.
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Figure 14. UDP throughput between VMs in the same node.

The obtained throughput results can be attributed to
the limited bandwidth of the OpenStack version or its
inability to utilize the maximum available bandwidth.
We also conducted another test using a different version
of OpenStack on the same operating system, CentOS
7.9. This OS version was previously used to deploy the
OpenStack system for this research. The results showed
that the throughput outcomes were almost identical.
However, when deploying a newer OpenStack version
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Figure 15. UDP throughput between VMs in different nodes.

in a more recent operating system such as Ubuntu
20.04, the obtained TCP throughput is significantly
higher and can reach tens of Gbps, which is almost
identical to the throughput when integrating Tungsten
Fabric into OpenStack (running on CentOS7.9), but
still slightly lower. However, Tungsten Fabric cannot be
installed on Ubuntu 20.04 due to its inability to support
Python 3 at the time of conducting this research. It is
clear that users continue to use and favor the OpenStack
version that is installed on the CentOS 7.9 operating
system due to its continued effectiveness. Moreover,
the throughput is influenced by the packet processing
performed by OvS in conventional OpenStack and by
the vRouter when Tungsten Fabric is integrated into
OpenStack. The large amount of virtual interfaces that
packets travel during processing by OvS has a sub-
stantial impact on the transmission and reception of
packets, resulting in a significant decrease in network
performance in term of throughput between virtual
machines. As a consequence, the throughput achieved
in the standard OpenStack system is lower than the
throughput in the OpenStack integrated Tungsten Fab-
ric system.
b) Latency

As shown in Figure 16, in all scenarios, the standard
OpenStack system exhibits significantly higher latency
compared to the integrated system. Moreover, when not
combining OpenStack with Tungsten Fabric, the latency
transmitting ICMP packets between virtual machines
has a greater impact when they are situated in the same
or different network ranges than when they are located
in the same or different compute nodes (the latency of
the standard system varies across the four cases).
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Figure 16. Latency.
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However, the controller can help us resolve this issue.
In the integrated system, the results obtained when
comparing scenarios 1 with scenario 2 and scenarios
3 with scenario 4 are not significantly different. This
means that regardless of whether the virtual machines
are on the same virtual network or not, the latency
remains unaffected, the delay only increases when the
VMs are located on different compute nodes.

When a packet is processed by OvS to go between vir-
tual machines, it must transit many virtual interfaces,
such as virtual ports or taps. However, with vRouter,
the packet does not need to pass through several virtual
interfaces. There is just one virtual interface between
the vRouter Forwarder and the server’s primary net-
work card. The performance was considerably affected
due to excessive traffic traveling via several imper-
ceptible interfaces. This explains why the integrated
system has lower latency and more efficient utilization
of network resources compared to standard OpenStack.

5.2.2 System Utilization: We will show the RAM and
CPU utilization of the OpenStack Cloud system with
and without the Tungsten Fabric controller when we
deploy the system or create a VM (virtual machine), or
conduct 4 scenarios. It is important to note that as we
create more VMs, the system utilization increases ex-
ponentially. Additionally, during these scenarios, only
the CPU usage of the Compute Node varies, therefore,
we will focus on presenting the CPU utilization of the
Compute Node in these cases. Finally, all conditions
when comparing two systems are the same.

Control Node CPU (%)

’ -
0 I

System after Creating 1 VM
Deployment

lation, surpassing that of a typical OpenStack deploy-
ment. Before installation, the system CPU was at 0%
but after installation, it was kept at a constant level of
9% for normal OpenStack and 37% for integration with
Tungsten Fabric controller. This effect is especially evi-
dent in RAM usage as the system reaches 26 GB when
integrated with TF compared to 6.5 GB for standard
OpenStack. But when we created a VM, the integrated
system consumed significantly fewer system resources
in terms of RAM and CPU compared to the standard
OpenStack system (2% CPU and 0.3 GB RAM compared
with 41% CPU and 1.6 GB RAM).
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Figure 19. CPU utilization in Compute Node.
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Figure 20. RAM utilization in Compute Node.
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Figure 17. CPU utilization in Control Node.
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Figure 18. RAM utilization in Control Node.

As shown in Figure 17 and Figure 18, in the Control
node, the Tungsten Fabric (TF) controller exhibits a
significant impact on system performance upon instal-

Figure 19 and 20 show the system performance in
the Compute Node between the standard OpenStack
system and the integrated system. After deployment,
the conventional OpenStack system typically consumes
minimal RAM performance, while the integrated sys-
tem uses 13%. However, when creating a virtual ma-
chine, the regular system consumes more RAM than
the OpenStack integrated with Tungsten Fabric system
(26% compared to 20%). While conducting four scenar-
ios, the Tungsten Fabric-integrated system’s compute
node CPU is about 10 to 15% higher than standard
OpenStack. This can be explained by the outperform-
ing network throughput of the integrated system; in
scenarios 3 and 4, because the bandwidth is reduced to
1000 Mbps, this also causes the CPU usage performance
of both systems to decrease compared to scenarios 1
and 2. In terms of RAM usage performance, after the
successful system deployment, contrary to the control
node, the regular OpenStack system uses slightly more
RAM (around 20%) than the integrated system. When
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creating a virtual machine, the regular system also
consumes more RAM (around 37%) than TF-OpenStack
(1.3 GB compared to 0.95 GB).

Following the system performance result, we can ob-
serve that the integration of OpenStack with the Tung-
sten Fabric controller requires more system resources in
terms of RAM and CPU to set up compared to standard
OpenStack. However, during normal operations such as
VM creation, VM launch, and so on, the integrated sys-
tem gives better speed but lower system resources than
the standard OpenStack setup. Only in four scenarios,
the system performance of Tungsten Fabric is higher, it
can be attributed to the superior network performance
of OpenStack integrated with Tungsten Fabric when
compared to a standard OpenStack environment. It is
essential to note that when we create VMs, the system’s
capacity grows exponentially with the addition of more
VMs so Tungsten Fabric enables improved management
of systems with a larger number of VMs.

6 CONCLUSION

In conclusion, our evaluation of Tungsten Fabric has
demonstrated its superior network performance when
integrating into OpenStack compared to conventional
OpenStack deployments. It has shown remarkable net-
work efficiency, delivering enhanced speed and relia-
bility. However, it is worth noting that the deployment
of the controller with OpenStack requires a lot of RAM
consumption. Despite this drawback, Tungsten Fabric’s
outstanding network performance makes it a promising
choice for organizations seeking improved networking
capabilities in their OpenStack infrastructure. Further
research and optimization are needed to address the
RAM utilization issue during the integration and un-
lock the full potential of this powerful networking
solution.
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