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Abstract– Our study presents an implementation of ChaCha20-Poly1305 on a self-organizing data framing on enhancing
Internet of Things (IoT) communication. This enhancement is to apply manageability, security, and patternability to
bare-metal IoT communication. Regarding handling communication data, data framing is designed with a manageable
and patternable frame structure. Based on the data framing, the frame structure is established with additional fields for
management, identification, and error detection to prevent malfunctions in IoT system. Furthermore, the main data package is
encrypted by the combination of two stand-alone lightweight algorithms ChaCha20 and Poly1305 founding comprehensive
Authenticated Encryption with Associated Data (AEAD). Based on the data framing, a data exchange scheme based on
Virtual Register Management is patterned for manageability and customizability of processing perception data of a device.
Regarding processing a frame, a frame parsing process is constructed and applied to node MCUs and the IoT cloud to
ensure identification and avoid malfunction in implementation of frame detection. On ARM Cortex-M4 device without
AES-NI accelerator, the ChaCha20-Poly1305 AEAD scheme performs better in terms of runtime and stack size, compared
to AES-based AEAD methods in software-only implementation. Finally, the data exchange scheme using Virtual Register
Management is applied rationally to manage perception data of a specific IoT system monitoring Base Transceiver Stations.

Keywords– IoT security, lightweight cryptography, data framing, data exchange scheme.

1 Introduction

Internet of Things (IoT) networks have received a lot
of attention globally in this digital age. These networks
contain an enormous quantity of IoT devices. An IoT
device, or node, is often made up of devices with lim-
ited resources. IoT devices’ connections are extremely
delicate and susceptible. Many security solutions are
made to offer confidentiality, authentication, and re-
liability in order to protect IoT connections [1]. IoT
devices based on Microcontroller Unit (MCU), which
have limited resources, can benefit greatly from the se-
curity solutions offered by Lightweight Cryptography
(LWC). Authenticated Encryption with Associated Data
(AEAD) is a complete solution designed for devices
with limited resources. Modern high-speed message
authentication codes like Poly1305-AES are appropriate
for a broad range of uses [2].

When it comes to hardware acceleration, AES is
extremely quick; yet, when it comes to software im-
plementation, it is slower and more inefficient in en-
ergy usage [3] [4]. High-speed cipher ChaCha20 is
considered to be quicker than AES in software-only
implementations [5] [6]. ChaCha20-Poly1305 AEAD can
offer a complete security solution and better perfor-
mance for devices/MCU with limited resources and
without AES-NI support [7] [8]. ChaCha20-Poly1305
can guarantee secure communications between nodes
and the cloud for IoT systems. To ensure sustainable
operations and synchronization, it is important to im-

prove local node interactions in addition to enabling
secure node-cloud connections. The Universal Asyn-
chronous Receiver-Transmitter (UART) can be used to
build embedded IoT device interaction and is useful
for making communication [9]. Flexibility, affordability,
and high performance can be achieved with UART-
based logic systems [10]. However, in order to iden-
tify communication and synchronization issues, UART-
based transactions must be improved by adding extra
field, checksum, or Cyclic Redundancy Check (CRC)
bits [11]. For embedded devices, data framing can
enhance UART communication [12].

In our proposal, to improve UART-based com-
munication in an IoT node, the main data pack-
age is wrapped with additional fields of headers,
trailers, and Cyclic Redundancy Check (CRC) for
identification, management, and error detection to
prevent malfunctions between MCUs and also the
whole IoT system. Regarding implementations of
ChaCha20-Poly1305 AEAD, the ChaCha20 is simple
with Addition-Rotation-XOR (ARX) operations and
easy to be manually implemented on MCUs or IoT
cloud. By contrast, to handle a complicated 130-bit mul-
tiplication of Poly1305, a 130-bit modular multiplication
is designed by using limb encoding based on Comba
method [13].

Based on the data framing, a data exchange scheme
using Virtual Register Management is constructed by
reformating data bytes with ID fields to organize an
appropriate and customizable casting method for dif-
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ferent perception values of a device. On communi-
cation implementation between an IoT cloud and a
node of STM32 and ESP32, the frame parsing process
performs precisely to guarantee identification and pre-
vent malfunction on frame detection. On ARM Cortex-
M4 device without AES-NI accelerator, our ChaCha20-
Poly1305 performs more efficiently in terms of runtime
and stack size, compared to AES-based AEAD schemes
in software-only implementation. In a specific IoT im-
plementation of monitoring Base Transceiver Stations
(BTSs), a data exchange scheme using Virtual Regis-
ter Management is established rationally to manage
perception data with customization. All things consid-
ered, our work proposes using the ChaCha20-Poly1305
AEAD in conjunction with a self-organization data
framing to improve bare-metal node-side and node-
cloud communication for manageability, patternability,
and security in constructing data exchange schemes.

2 The ChaCha20 Algorithm

The ChaCha20, a family of stream ciphers, was devel-
oped by D. J. Bernstein from the Salsa20. The ChaCha20
encryption is made up from the quarter round and
block function.

Fundamentally, the ChaCha20 quarter round is built
on operations of four 32-bit integers denoted by the
letters a, b, c, and d, as follows, in C-style notation:

a += b; d ∧= a; d <<<= 16
c += d; b ∧= c; b <<<= 12
a += b; d ∧= a; d <<<= 8
c += d; b ∧= c; b <<<= 7

The quarter round consists of four main operating
groups. In terms of pattern, the first and third groups
are similar to one another. They only differ at the left ro-
tation value; the second and fourth groups also exhibit
this trait. The ChaCha20 quarter round is applied to the
ChaCha20 state. There are 16 32-bit integer numbers in
the ChaCha20 state. Each 4 of them are handled by a
quarter-round process.

As seen in Algorithm 1, lines 5–12, the ChaCha20
block function applies several quarter-round operations
on a ChaCha state. The block’s inputs consist of a 256-
bit key K, 96-bit nonce N, and 32-bit block counter
CNT. The block produces a 64-byte key stream as
its output. The ChaCha20 state is initialized with the
inputs as a 4x4 matrix-patterned block with 16 32-bit
integer integers. A 128-bit constant, denoted as CONST
makes up the first four words, which are, respectively,
0x61707865, 0x3320646e, 0x79622d32, and 0x6b206574.
The 256-bit key K is represented by the next 8 words.
Comparatively, the final 4 words are a 32-bit counter
CNT and a 96-bit nonce N. After that, the ChaCha20
process runs 20 rounds in which it applies “diagonal
rounds” and “column rounds” to the ChaCha20 state
in turn. The “diagonal rounds" and “column rounds" in
Algorithm 1 essentially function from lines 9–12 and 5-
8. The ChaCha20 state input is added to the key stream
output following 20 quarter cycles.

Algorithm 1 The ChaCha20 Encryption Algorithm
C = chacha20_encrypt_block(K, CNT, N, P)

INPUT: K ∈ {0, 1}256, CNT ∈ {0, 1}32, N ∈
{0, 1}96, P ∈ {0, 1}∗

OUPUT: C ∈ {0, 1}|P|
1: for i = 0 upto ⌊L(P)/512⌋ − 1 do
2: S← CONS ∥ KEY ∥ CNT + i ∥ N
3: Stemp ← S
4: for j = 0 upto 10 do
5: Qround(Stemp, 0, 4, 8, 12)
6: Qround(Stemp, 1, 5, 9, 13)
7: Qround(Stemp, 2, 6, 10, 14)
8: Qround(Stemp, 3, 7, 11, 15)
9: Qround(Stemp, 0, 5, 10, 15)

10: Qround(Stemp, 1, 6, 11, 12)
11: Qround(Stemp, 2, 7, 8, 13)
12: Qround(Stemp, 3, 4, 9, 14)
13: end for
14: S += Stemp
15: C[i ∗ 512..(i ∗ 512 + 511)] = P[i ∗ 512..(i ∗ 512 +

511)] ∧ S
16: end for
17: return C

The ChaCha20 uses keystreams generated from the
ChaCha20 block to encrypt the plaintext. The ChaCha20
encryption is divided into 512-bit sections, based on
the plaintext length, for efficient programming, which
optimizes memory by using Algorithm 1 at the indexes
at line 1 of the for loop. The ChaCha20 block function
provides a 512-bit keystream with the same key K,
nonce N, and progressively increasing block counter
parameters (CNT + i) in each segment. After that, a
512-bit ciphertext section is computed by XORing the
relevant plaintext and 512-bit keystream sections for
each index i. Ultimately, an encrypted message of the
same plaintext length is provided by the ChaCha20
encryption. The encryption and decryption processes
are similar. Keystreams are generated by the decryption
and XORed with the ciphertext to recover the plaintext.

3 The Poly1305 Algorithm

Poly1305 is a one-time authenticator designed by D. J.
Bernstein. Poly1305 generates a 16-byte tag from a 32-
byte one-time key and the message. This tag is used to
authenticate the message [6].

The one-time key is partitioned into 16-byte “r” and
“s” parts respectively. Before being used, the Poly1305
process first clamps the “r”. Clamping “r” is to ensure
that the top four bits of r[3], r[7], r[11], and r[15] and
the bottom two bits of r[4], r[8], and r[12] is cleared. The
Poly1305 takes an input set of a 256-bit one-time key
and an arbitrary-lengthed message. From the original
article of Poly1305 [2] and Santis et al [14], the Poly1305
tag is calculated as follows:

T =

((
q

∑
i=0

mi r̄q−i+1 mod p

)
+ s

)
mod 2128, (1)
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where T is the 16-byte authentication tag, (mi)1≤i≤q is
a 17-byte padded message chunk containing a 16-byte
message section padded with a 1-byte 0x01. With a l-
byte message, the message is chopped into q = ⌈l/16⌉
sections. r̄ is the result of clamping r. p is the constant
prime 2130 − 5. s is the secret key, the 16-byte big-
endian partition of the input one-time key K. In the
programming approach, the Poly1305 process is imple-
mented following Algorithm 2. The sum of products
of the Equation 1 is handled in the for loop, from
lines 6-10, based on Horner’s method. From Santis et
al [14], the additions and multiplications of Poly1305’s
tag generator is also presented as follows

acc = ((· · · (m1r̄ + m2)r̄ + · · ·+ mq−1)r̄ + mq)r̄ mod p.
(2)

This optimization method performs without computing
complicated exponent operations for r̄.

In ChaCha20-Poly1305 implementation, the 256-bit
session key specifically for the Message Authentication
Code (MAC) to form such a key pair (r, s) is generated
by the ChaCha20 block function. The block function is
called with the following parameters: a 256-bit session
integrity key considered as the ChaCha20 key, a block
counter set to zero, and a 96-bit nonce. A 512-bit
state is then generated. The first 256 bits are used to
respectively partition a 16-byte r and s. The rest 256
bits are discarded.

Algorithm 2 The Poly1305 Algorithm
T = poly1305_mac(M, K)

INPUT: M ∈ {0, 1}∗, K ∈ {0, 1}256

OUPUT: T ∈ {0, 1}128

1: r ← K[0..15]
2: r̄ ← clamp(r)
3: s← K[16..31]
4: acc← 0
5: p← (1≪ 130)− 5
6: for i = 1 upto ⌈L(M)/16⌉ do
7: n← M[(i− 1) ∗ 16)..(i ∗ 16)] ∥ 0x01
8: acc += n
9: acc← (r̄ ∗ acc) mod p

10: end for
11: acc += s
12: T ← acc[0..16]
13: return T

4 The ChaCha20-Poly1305 Construction

ChaCha20-Poly1305 is an Authenticated Encryption
with Associated Data (AEAD) algorithm [6].

The ChaCha20-Poly1305 function computes a 128-
bit tag T and ciphertext from a 256-bit key K, 96-bit
nonce N, an arbitrary-length plaintext, and Arbitrary
length additional authenticated data (AAD):

CC20_P1305 : {0, 1}256 × {0, 1}96

×({0, 1}∗)2 → {0, 1}∗ × {0, 1}128, (3)

such that (K, N, A, P) 7→ (C, T) (illustrated in Algo-
rithm 3). Firstly, with the 256-bit key and 96-bit nonce,
the ChaCha20-Poly1305 function generates a Poly1305
one-time key from the ChaCha20 block function. The
ChaCha20 encryption function then encrypts the plain-
text with the same key and nonce. Finally, the Poly1305
function with the generated one-time key computes
a 16-byte authentication tag from a message concate-
nation of padded AAD, padded ciphertext, a 64-bit
casted length of AAD, and a 64-bit casted length of
ciphertext. Based on Santis et al [14], the padded AAD
and ciphertext is provided from the function pad16 :
{0, 1}8l → {0, 1}8(l+δ) that pads δ = (16 − l) mod 16
zero bytes to a l-byte input. The decryption resembles
the encryption process. However, the roles of ciphertext
and plaintext are reversed in the ChaCha20 encryption
function. The ChaCha20 function is applied to the
ciphertext to provide the plaintext.

Algorithm 3 AEAD Construction
(C, T) = CC20_P1305(K, N, A, P)

INPUT: K ∈ {0, 1}256, N ∈ {0, 1}96, A ∈ {0, 1}∗, P ∈
{0, 1}∗

OUPUT: C ∈ {0, 1}|P|, T ∈ {0, 1}128

1: OTK ← poly1305_key_gen(K, N) {One-time Key}
2: C ← chacha20_encrypt(K, 1, N, P) {Ciphertext}
3: M← pad16(A) | pad16(C) | |L(A)| | |L(C)| {MAC

Data}
4: T ← poly1305_mac(M, OTK) {Poly1305 Tag}
5: return C, T

5 Proposed Self-Organization Data

Framing

To integrate on a serial protocol, data framing is applied
on an IoT node constructed from a combination of
two MCUs with built-in serial protocol modules such
as UART. STM32 is appropriate to perform on-node
computations due to its wide range of family, energy
efficiency, and various capacities for IoT applications or
purposes [15] [16]. Among STM32 devices and families,
STM32 devices without AES-NI accelerator are selected
to implement ChaCha20-Poly1305 in software-only en-
vironment. Since different STM32 devices are suitably
chosen for distinct usages, no specific STM32 device
or family is pointed out in this proposal. ESP32 is an
IoT device with cost efficiency, low power consumption,
and capabilities of both serial and wireless communi-
cation [17]. From this point and in conjunction with an
STM32 device without built-in Wi-Fi module, ESP32 is
suitable to be an IoT on-node forwarder or gateway.
With the two MCUs with built-in UART hardware,
these MCUs are used to construct a physical node to
integrate the data framing. This MCU combination is
our specific use case to establish the data framing on
a physical IoT node, other combinations with distinct
serial protocols are still able to use this framing tech-
nique. For an MCU, UART is a good low-cost and
low-power solution. However, UART connections may
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give rise to problems like clock drift and temporal
predictability [18]. To improve UART connection, ad-
ditional fields are added to the data frame. Partitions
that are needed to determine the start and stop of the
frame, compute the Cyclic Redundancy Check (CRC),
and manage data should be provided by the frame [12].
The frame structure is built using the following compo-
nents to meet these needs: CRCs, HEADERS, BODY,
and TRAILERS (shown in Figure 1). Two bytes, H1
and H2, are present in the HEADERS field to identify
the frame start. The 2-byte “Data Length”, the 1-byte
“Command”, and the data bytes are concatenated to
form the BODY field. The two bytes T1 and T2, which
indicate the frame end, are contained in the TRAILERS
field. Lastly, the two bytes CRC1 and CRC2 for the 16-
bit CRC calculation are contained in the CRCs field.

The frame protocol facilitates node-cloud interactions
via the Message Queueing Telemetry Transport (MQTT)
protocol as well as communication between a node’s
MCU via the UART protocol. A node’s STM32 and
the IoT cloud engage in frame transactions in an inter-
mediary way through ESP32, to which the ChaCha20-
Poly1305 AEAD is implemented. The data bytes in a
frame are subjected to the ChaCha20-Poly1305 AEAD.
To create an encrypted frame (shown in Figure 2), the
AEAD algorithm computes a 16-byte authentication tag
and encrypted data bytes (c[1], c[2], ...c[n]). A decryp-
tion process on a frame is designed to decrypt data
bytes and utilize the 16-byte tag for authentication.

HEADERS BODY TRAILERS CRCs

H1 H2 T1 T2 CRC1 CRC2Command Data Length Data[0] ... Data[n-1]

Figure 1. The frame structure of the IoT system.

H1 H2 T1 T2 CRC1 CRC2Command Data
Length

Data[0] ... Data[n-1]

16-byte Tag C[0], C[1], C[2]...C[n-1]

ChaCha20-Poly1305

Plain Data

Encrypted Data with Authtication
Tag

ST
M

32

IoT C
loud

Node-to-Cloud Transmission through ESP32

Cloud-to-Node Transmission through ESP32

Figure 2. The ChaCha20-Poly1305 Implementation on the Proposed
Frame Protocol.

The ESP32 establishes a fixed-length circular buffer
to temporarily store transaction data in order to buffer
transmission data. Data from the STM32 is cached via
UART, while data from the IoT cloud is cached via
MQTT, using two circular buffers. The design of the
arbitration block is to decide how to adjudge the buffers
in the firmware of the MCU’s endless loop (Figure 3). In
every infinite-loop period, the arbitrator alternately in-
dexes the buffers. A suitable circular buffer is regularly
handled and inspected. Another independent process

is where frame parsing is initiated (Figure 4). When a
successful, failed, or timeout event is raised, the parsing
procedure ends.

Start

true

false
1

Setup Circular Buffer
Selector  

Containing UART and
MQTT Buffers

true

false

Curent Buffer  
has data

Start processing the
buffer

true

false

Buffer still  
has data Parse data

Figure 3. Arbitration Process of Circular Buffers.

Start

Setup process for  
frame parsing

true

false Frame is
parsing

true

false

Is timeout

End

Stop parsing process

true

false

Buffer  
has data Parse data

true

false

Frame parsing
successfully

Handle successful
frame

true

false

Frame parsing  
incorrectlyHandle failed frame

Figure 4. Frame Parsing Process.

Based on the frame structure, we propose a scheme
to exchange perception data (Temperature, Humidity,
Relay Status, etc.) of a device with typical data types
(Integer, Real Number, and String). To consider per-
ception data exchange, the perception data exchange is
specified by command ID in a command list of an IoT
system. In the frame structure, a command ID of per-
ception data exchange is exactly provided at the com-
mand field. At the start of the data bytes, an arbitrary-
sized Device ID is positioned for device identifica-
tion. In the next position, to indicate the corresponding
casting method, a 1-byte ID, which is defined as Virtual
Register ID in this proposal, is inserted to detect an
appropriate procedure (illustrated in Figure 5). In this
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work, this method using Virtual Register ID is called
Virtual Register Management and explained as fol-
lows. With a 1-byte ID, this management method is able
to handle 256 Virtual Registers corresponding to 256
perception values of a device, and each IoT system
should limit an appropriate number of Virtual Registers
suitable for every resource-constrained device. Regard-
ing managing received perception data for one device,
Virtual Register ID specifies a procedure indicating
how the data bytes are cast to store appropriately in
Integer, Real Number, or String in physical registers
of a computer device. With each Virtual Register ID
of a device, a default procedure is preset on computer
devices and able to be customized. At C-based STM32
devices, the weak functions are used to predefined
default procedures of each Virtual Register ID. This
allows a default procedure to be overwritten to custom
processing of corresponding perception data. At the IoT
cloud, a perception value is only cast as an appropriate
data type for a perception value based on its preset data
type along with Virtual Register ID. Hence, there is cur-
rently no room for casting customization on the cloud
side. In further, flow-based visual programming such
as Node-RED can be applied to provide customization
of perception data procedure in the IoT cloud.

Data
Exchange
Command

Data Length Data[0] ... Data[n-1]Virtual
Register ID

Command List

Data Exchange

Other command

...

Virtual Register ID

0x00

0x01

...

Casting Procedure

procedure00(data)

procedure01(data)

...

Customization

Weak function in C platform

Node-RED (Future Work)

BODY FRAME FOR PERCEPTION DATA

Device ID

Figure 5. The Proposed Perception Data Exchange Scheme of a Device
based on Virtual Register Management.

6 Implementation Results and

Discussions

6.1 Implementation of ChaCha20-Poly1305 and Data
Framing on a Specific IoT System

The ChaCha20-Poly1305 AEAD and data framing are
applied on an IoT system monitoring and controlling
two air conditioners of BTSs (illustrated in Figure 6).
The system consists of client-side, cloud, and node
components. A node is built with an ESP32 and an
STM32. The STM32 is used to acquire data from sen-
sors (temperature, current, and voltage) and to directly
control the status of two relays that switch on and off
air conditioners. Our specific STM32 device of a node
of this application is STM32F103C8T6. The ESP32 is
positioned to transport data frames between the cloud
and STM32. A Virtual Private Server (VPS) is used to
serve cloud apps. Server applications are constructed
based on a web server and back-end system. The web
application is used to give Graphical User Interface

(GUI) on the client side. The data framing is positioned
on local-node communication. Transaction data is cov-
ered by extra fields for error detection, synchronization,
and UART improvement across the UART protocol
between MCUs. The ChaCha20-Poly1305 is placed on
communication of STM32 and the IoT cloud in an
intermediary way through ESP32. As a result, in the
Internet environment, authentication and encryption
are applied to data of the Internet of Things system
together with the suggested data frame. For an STM32
device, the Virtual Register Management is applied to
handle 7 perception values from sensors and actuators
(illustrated in table I). Finally, the data types Integer,
Real Numer, and String in C-based platform of an
STM32 device and our NodeJS-based IoT cloud are
specified in Table II.

Node

Sensors

STM32

ESP32

Relays

Self-Organization Frame

ChaCha20-Poly1305

ChaCha20-Poly1305

Self-Organization Frame

Vi
rt

ua
l P

riv
at

e 
Se
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er

Back-end 
System Web Server

Client Side

Web Application

Figure 6. Implementation of ChaCha20-Poly1305 and Data Framing
on the IoT System.

Table I
Organization of Virtual Register Management of an STM32

device for BTS Management

Register
Name

Register
ID

Data
Type

Description

Temperature 0x00 Real Room temperature of
the BTS

Current 1 0x01 Real Current of 1st AC
unit

Current 2 0x02 Real Current of 2nd AC
unit

Voltage 1 0x03 Real Voltage of 1st AC
unit

Voltage 2 0x04 Real Voltage of 2nd AC
unit

Relay 1 0x05 Integer On/Off of 1st AC
unit

Relay 2 0x06 Integer On/Off of 2nd AC
unit
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Table II
Data Type Specifications on C-based STM32 Devices and the

NodeJS-based IoT cloud

Data
Type

C-based STM32
Device

NodeJS-based IoT
Cloud

Integer int32_t Element of
Int32Array

Real float Element of
Float32Array

String char array String

6.2 Data Framing and Security

6.2.1 Frame Parsing: The correctness of the frame
parsing process is evaluated by a sample perception
data exchange between an STM32 and the IoT cloud
in an intermediate way through an ESP32 (illustrated
in Figure 7). To start the data exchange process, the
STM32 sent a frame containing 71-byte data. The 71-
byte data includes 1-byte Virtual Register ID, 4-byte
perception data, 16-byte ChaCha20-Poly1305 tag, and
an additional 50-byte device identification for database
query. In this test case, on receiving a frame of data
exchange, the IoT cloud forwards the frame back to
STM32 to trigger the frame parsing process on the
STM32 device. Through logging, each stage of the data
framing process is printed out to supervise states of
detecting headers, trailers, and CRC codes. On STM32,
millisecond timing is obtained by using the 1-KHz
counter of the default system timer, and microsecond
timing is measured by using a custom 1-MHz counter
of another built-in timer peripheral. On ESP32, the
microsecond timing is based on micros function of Ar-
duino framework. On the NodeJS-based IoT cloud, mil-
lisecond timing is measured from performance.now
API of NodeJS framework, and microsecond timing is
acquired by timespec_get function of a C program
triggered by using child-process module. Finally,
the frame parsing is correctly implemented based on
the algorithm demonstrated in Figure 4.

6.2.2 Accuracy of ChaCha20-Poly1305 Processes: The
ChaCha20-Poly1305 has been successfully implemented
in STM32 and the IoT cloud. According to the AEAD
construction of the ChaCha20-Poly1305, the encryption
process (illustrated in Figure 8) has precisely performed
according to the RFC 8439 [6]’s order:

1) Initialize state for Poly1305 one-time key.
2) Generate Poly1305 one-time key.
3) Execute ChaCha20 encryption function.
4) Execute Poly1305 function for ciphertext.
The decryption process of the ChaCha20-Poly1305

AEAD (illustrated in Figure 9) has also correctly op-
erated according to the RFC 8439 [6]’s order:

1) Initialize state for Poly1305 one-time key.
2) Generate Poly1305 one-time key.
3) Execute Poly1305 function for ciphertext.
4) Execute ChaCha20 decryption function.
According to a report of KDDI Research [19],

there is no weakness found in ChaCha20-Poly1305
AEAD. In addition, Procter [20] proved that the
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- STM32 Send Frame, encryption time = 1589 (us), data length = 71 (byte) 
- Frame Parsing Start 

- H1 OK 
- H2 OK 
- T1 OK 
- T2 OK 
- CRC OK 

- Frame Parsing End (3 ms), decryption time = 1590 (us), data length = 71 (byte) 

- Frame Parsing Start, data length = 71 (byte) 
- HEADERS OK 
- TRAILERS OK 
- CRC OK 

- Frame Parsing Stop (3.16 ms), decryption time = 0.02 (us) 
- Server Send frame, encryption time = 0.171 (us), data length = 71 (byte) 

(a) Log Supervising of STM32 and the IoT cloud

- Device Frame Parsing Start 
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- Device Frame Parsing End (254 us), data length = 71 (byte) 
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- CRC OK 

- Server Frame Parsing End (250 us), data length = 71 (byte) 
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(b) Log Supervising of ESP32

Fig. 7: A sample perception data exchange of STM32 and the IoT cloud in an
intermediary way through ESP32.

(a) Log Supervising of STM32 and the IoT cloud 

- Device Frame Parsing Start 
        - H1 OK 
        - H2 OK 
        - T1 OK 
        - T2 OK 
        - CRC OK 
- Device Frame Parsing End (254 us), data length = 71 (byte) 
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        - T1 OK 
        - T2 OK 
        - CRC OK 
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Figure 7. A sample perception data exchange of STM32 and the IoT
cloud in an intermediary way through ESP32.

ChaCha20-Poly1305 AEAD is secure if both ChaCha20
and Poly1305 are secure. Salsa20, the origination of
ChaCha20, is evaluated with significant security re-
views on Differential attacks, Algebraic attacks,... [21]
Regarding other variations, attacks on ChaCha6/7/12
are made by Aumasson et al [22], Shi et al [23],
Maitra [24], and Choudhuri [25]. However, according
to KDDI Research, among several cryptanalyses, Dif-
ferential Analysis, Linear Cryptanalysis, Distinguishing
Attack, Guess and Determine Analysis, Algebraic At-
tack, and Attacks on Initialization revealed no attack
in ChaCha20. Additionally, time-memory-data trade-
off attack theoretically applies to the original ver-
sion of ChaCha with 2140 time complexity using 280

keystreams and 2160 memory size. For the IETF ver-
sion of ChaCha, the time complexity is 2234.67 employ-
ing 2117 keystreams and 2176 memory size. However,
based on practical assumption of KDDI Research, time-
memory-data tradeoff attack is impossible to apply to
ChaCha with time complexity less than 2256 by limiting
keystream size to 296. Regarding the Poly1305, the
KDDI Research found that Poly1305 is a ε-almost-∆-
universal where ε = 8⌈L/16⌉/2106, which proved that
Poly1305 is a secure hash function. Poly1305 forged
messages are rejected with a probability of 1− (n/2107),
where n is the maximum length of the Poly1305 in-
put. The maximum forgery probability of Poly1305 is
roughly 1/293 in (D)TLS [26].

6.3 ChaCha20-Poly1305 Benchmarkings
ChaCha20-Poly1305 benchmarking is conducted on

an STM32F407VGT6 board’s ARM Cortex-M4 core.
With an ARM Cortex-M device, all metrics of the
ChaCha20-Poly1305 performance can be obtained
based on using an available framework, Cifra [27].
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- ChaCha20-Poly1305 Encryption Start 
        - Set-up of Poly1305 one-time key: 
                61707865 3320646e 79622d32 6b206574 
                3c78f0e1 f0e10f1e 0f1e3c78 3c78f0e1 
                53a60f1e 254a9429 c993264c 5fbf3264 
                00000000 43860c18 0e1c9021 20418307 
 
        - Poly1305 one-time key: 
                3d8653f0 ebba5876 5feca469 3f911b29 
                6444430e 31ed471d 27a666c3 027c1891 
 
        - ChaCha20 Encryption State: 
                61707865 3320646e 79622d32 6b206574 
                3c78f0e1 f0e10f1e 0f1e3c78 3c78f0e1 
                53a60f1e 254a9429 c993264c 5fbf3264 
                00000001 43860c18 0e1c9021 20418307 
 
        - Poly1305 function execution for ciphertext. 
        - Poly1305 Tag: 
                9c690631 ee8bff24 0fac3a90 6ad67d7d 
- ChaCha20-Poly1305 Encryption End 

 

  

(a) STM32

- ChaCha20-Poly1305 Encryption start 
        - Set-up of Poly1305 one-time key: 
                61707865 3320646e 79622d32 6b206574 
                3c78f0e1 f0e10f1e 0f1e3c78 3c78f0e1 
                53a60f1e 254a9429 c993264c 5fbf3264 
                00000000 43860c18 0e1c9021 20418307 
        - Poly1305 one-time key: 
                3d8653f0 ebba5876 5feca469 3f911b29 
                6444430e 31ed471d 27a666c3 027c1891 
        - ChaCha20 Encryption State: 
                61707865 3320646e 79622d32 6b206574 
                3c78f0e1 f0e10f1e 0f1e3c78 3c78f0e1 
                53a60f1e 254a9429 c993264c 5fbf3264 
                00000001 43860c18 0e1c9021 20418307 
        - Poly1305 function execution for ciphertext. 
        - Poly1305 Tag: 
                39980953 7f7c384d 5d5eb0bb 021003d9 
- ChaCha20-Poly1305 process end 

 

  

(b) The IoT cloud

Figure 8. Log Supervising of the ChaCha20-Poly1305 AEAD for
encryption of STM32 and the IoT cloud.

Based on the Cifra framework, the metrics of Run-
time, Speed, Code Size, and Stack Size (illustrated in
Table III) are performed to compare with other algo-
rithms implemented on ARM and AVR Platforms. Since
our works mainly focus on constructing secure and pat-
ternable communication of an IoT system, these metric
comparisons are only used to indicate the acceptability
of the performance of our implemented ChaCha20-
Poly1305 algorithms compared to AES-based AEADs
in software-only environments. The metric software
was compiled by ARM-None-EABI-GCC (ARM GNU
Toolchain) version 13.2.1 release 20231009 with
flags -O2 -mthumb -mcpu=cortex-m4. The run-
time is measured in cycles and obtained when
applying 64-, 128-, and 16-byte messages for ChaCha20
encryption, Poly1305 MAC, and the whole AEAD pro-
cesses respectively. The cycle is determined by counting
the current Systick counter and its reset times after
triggering a test function by using the default Systick
settings. The speed of our implemented algorithms is
measured when processing a 4096-byte message. The
code size is calculated by subtracting the size of the text

 

- ChaCha20-Poly1305 Decryption Start 
        - Set-up of Poly1305 one-time key: 
                61707865 3320646e 79622d32 6b206574 
                3c78f0e1 f0e10f1e 0f1e3c78 3c78f0e1 
                53a60f1e 254a9429 c993264c 5fbf3264 
                00000000 43860c18 0e1c9021 20418307 
 
        - Poly1305 one-time key: 
                3d8653f0 ebba5876 5feca469 3f911b29 
                6444430e 31ed471d 27a666c3 027c1891 
 
        - Poly1305 function execution for ciphertext. 
        - ChaCha20 Decryption State: 
                61707865 3320646e 79622d32 6b206574 
                3c78f0e1 f0e10f1e 0f1e3c78 3c78f0e1 
                53a60f1e 254a9429 c993264c 5fbf3264 
                00000001 43860c18 0e1c9021 20418307 
 
        - Poly1305 Tag: 
                39980953 7f7c384d 5d5eb0bb 021003d9 
 
        - DECRYPT SUCCESSFUL 
- ChaCha20-Poly1305 Decryption End 

 (a) STM32 

- ChaCha20-Poly1305 Decryption start 
        - Set-up of Poly1305 one-time key: 
                61707865 3320646e 79622d32 6b206574 
                3c78f0e1 f0e10f1e 0f1e3c78 3c78f0e1 
                53a60f1e 254a9429 c993264c 5fbf3264 
                00000000 43860c18 0e1c9021 20418307 
        - Poly1305 one-time key: 
                3d8653f0 ebba5876 5feca469 3f911b29 
                6444430e 31ed471d 27a666c3 027c1891 
        - Poly1305 function execution for ciphertext. 
        - ChaCha20 Decryption State: 
                61707865 3320646e 79622d32 6b206574 
                3c78f0e1 f0e10f1e 0f1e3c78 3c78f0e1 
                53a60f1e 254a9429 c993264c 5fbf3264 
                00000001 43860c18 0e1c9021 20418307 
        - Poly1305 Tag: 
                9c690631 ee8bff24 0fac3a90 6ad67d7d 
        - Tag matched! 
- ChaCha20-Poly1305 process end 

 

  

(b) The IoT cloud

Figure 9. Log Supervising of the ChaCha20-Poly1305 AEAD for
decryption of STM32 and the IoT cloud.

section of a blank test program from the size of each
actual program. The stack size is measured by filling
the stack memory with a secret pattern and checking
how many patterns were overwritten after performing
a function. Overall, our implemented AEAD process
of ChaCha20-Poly1305 consumes a 2.6KB code size
and 580-byte stack with a speed of 31.5 cycles/byte
on ARM Cortex-M4. According to Table III, assembly-
based optimization of De Santis et al [14] is the most
efficient in both time and space. The method of Hülsing
et al [28] performs the fastest speed of ChaCha20, while
the code size is disproportionately large, at about 3
times bigger than our size. Regarding AEAD methods
of AES on software-only implementation of the Cifra
project, this performance may not be appropriate to
implement in software-only environment of low-cost
devices without AES accelerator. Compared to other
AEAD methods, NORX32 is an AEAD design and
its core is inspired by ChaCha20 [29]. NORX32 has
a good optimization in code size and stack usage,
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yet the speed needs to be enhanced in comparison
with the optimization methods of ChaCha20-Poly1305.
Regarding MAC algorithms, Chaskey is a permutation-
based MAC algorithm based on ARX construction.
The speed and code-size performance of Chaskey
in ARM Cortex-M4 is considerable and it is signif-
icantly faster than AES-128-CMAC in software-only
implementation [30]. Finally, our AEAD implemen-
tations are considerably outperformed by assembly-
based optimizations, yet our performance is better and
more acceptable in speed and stack usage, compared to
software-only AEAD implementations based on AES.

6.4 Implementation Techniques of ChaCha20 and
Poly1305

The ChaCha20 core is the Quarter Round. On an
MCU, ARX arithmetics are performed easily on 32-
bit platforms. Therefore, in C implementation, the ADD
and XOR are conducted normally as binary operators,
while the left rotation ROTL is performed by using the
“_lrotl” function of the stdlib.h. Regarding the
Poly1305, because the Poly1305 prime is 2130 − 5, the
multiplication result may reach a large 130-bit number
that isn’t supported for calculation in the up-to-64-bit
structure of the constrained ESP32 or STM32 device.
To perform 130-bit modular multiplication, a 130-bit
number is encoded into 5 26-bit limbs to apply Comba
method [13]. The 26-bit 5-limb structure is illustrated
in Table IV. With 2 26-bit limbs (a[i], b[i])4≥i≥0, the
multiplication of the limbs is a 52-bit number

a[i]× b[i] = X ∈ {0, 1}52. (4)

Due to the Poly1305 constant prime p = 2130 − 5, the
multiplication result X will always be smaller than
the p. In p modulo and condition X ≤ p, a multipli-
cation of 2130 is equaled to multiplying with 5

X ∗ 2130 = (X mod p) ∗ (2130 mod p) = X ∗ 5. (5)

For the X ∈ {0, 1}52, the multiplication of (X× 5) fits in
a 55-bit value. In combination with the 4 sums of each
s[i]4≥i≥0, the final value fits in a 57-bit value, which
is possibly handled in a 64-bit variable of an ESP32
or STM32.

The Algorithm 4 presents our Comba-based Modular
Multiplication on a 32-bit MCU to perform Poly1305
multiplication. Carry propagation process is obtained
as an optimized case when applying 2 maximum limb
values of r and a 16-byte message as in Equation (6).
Before triggering the modular multiplication process,
5-byte limbs of r are structured as follows each limb
only contains 26 bits of the 128-bit r and ensures the
clamping rule (mentioned in Section 3).

r_limb[0] = r[0..3] & 0x3ffffff

r_limb[1] = (r[3..6]≫ 2) & 0x3ffff03

r_limb[2] = (r[6..9]≫ 4) & 0x3ffc0ff

r_limb[3] = (r[9..12]≫ 6) & 0x3f03fff

r_limb[4] = (r[12..15]≫ 8) & 0x00fffff

(7)

Regarding the message, a 16-byte message is encoded

into 5 limbs as follows

m_limb[0] = m[0..3] & 0x3ffffff

m_limb[1] = (m[3..6]≫ 2) & 0x3ffffff

m_limb[2] = (m[6..9]≫ 4) & 0x3ffffff

m_limb[3] = (m[9..12]≫ 6) & 0x3ffffff

m_limb[4] = (m[12..15]≫ 8) & |(1≪ 24)

(8)

Algorithm 4 130-bit Modular Multiplication of
Poly1305 on 32-bit platforms.
Poly1305_Modular_Mul(h, r)

INPUT: h ∈ {0, 1}160 = (h0, h1, h2, h3, h4), r ∈
{0, 1}160 = (r0, r1, r2, r3, r4)

OUPUT: h ∈ {0, 1}160 = (h0, h1, h2, h3, h4)
1: s1 = r1 ∗ 5
2: s2 = r2 ∗ 5
3: s3 = r3 ∗ 5
4: s4 = r4 ∗ 5
5: d ∈ {0, 1}320 = (d0, d1, d2, d3, d4)

{h *= r}
6: d0← h0 ∗ r0 + h1 ∗ s4 + h2 ∗ s3 + h3 ∗ s2 + h4 ∗ s1
7: d1← h0 ∗ r1 + h1 ∗ r0 + h2 ∗ s4 + h3 ∗ s3 + h4 ∗ s2
8: d2← h0 ∗ r2 + h1 ∗ r1 + h2 ∗ r0 + h3 ∗ s4 + h4 ∗ s3
9: d3← h0 ∗ r3 + h1 ∗ r2 + h2 ∗ r1 + h3 ∗ r0 + h4 ∗ s4

10: d4← h0 ∗ r4 + h1 ∗ r3 + h2 ∗ r2 + h3 ∗ r1 + h4 ∗ r0
{carry propagation}

11: carry ∈ {0, 1}32 = 0
12: carry← d0≫ 26; h0← d0 & 0x3ffffff
13: d1 += carry; carry ← d1 ≫ 26; h1 ← d1 &

0x3ffffff
14: d2 += carry; carry ← d2 ≫ 26; h2 ← d2 &

0x3ffffff
15: d3 += carry; carry ← d3 ≫ 26; h3 ← d3 &

0x3ffffff
16: d4 += carry; carry ← d4 ≫ 26; h4 ← d4 &

0x3ffffff
17: h0 += carry ∗ 5; h0 &= 0x3ffffff
18: h1 += carry
19: h← (h0, h1, h2, h3, h4)
20: return h

7 Conclusions

Our work has successfully constructed and imple-
mented ChaCha20-Poly1305 scheme on data framing
on a specific application of IoT communication. A bare-
metal communication from this organization is able
to integrate data exchange constructions with man-
ageability, patternability, and security. Additional fields
(headers, trailers, and CRCs) of the frame structure are
capable of organizing IoT communication with identi-
fication and malfunction protection. On STM32 devices
without AES-NI accelerator, the ChaCha20-Poly1305
combination ensures better performance in runtime and
stack usage, compared to AES-based AEAD methods.
Based on the patternable frame structure, a data ex-
change scheme employing Virtual Register Manage-
ment is established with customizable casting pro-
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Table III
Performance Evaluations of the ChaCha20, Poly1305, and ChaCha20-Poly1305 AEAD on ARM and AVR Platforms

Platform Algorithm Cycles Cycles/Byte Size [Byte] Stack [Byte]
ATmega2560 [31] ChaCha20 17787 268.0 _ 268
Cortex-M4 [27] Salsa20 3311 _ 1272 552
Cortex-M0 [32] ChaCha20 _ 39.9 _ _
Cortex-M4 [27] ChaCha20 3468 _ 1328 544
Cortex-M4 [28]‡ ChaCha20 1287 17.6 3174 228
Cortex-M4 [14] ChaCha20 1487 20.6 734 232

Cortex-M4† ChaCha20 1651 24.0 1060 236

Cortex-M0 [30] Chaskey _ 18.3 1308 _
Cortex-M4 [30] Chaskey _ 7.0 908 _
Cortex-M4 [14] Poly1305 747 3.6 744 120
Cortex-M4 [14] Poly1305-ChaCha20 1945 3.6 1322 224

Cortex-M4† Poly1305 1316 7.5 1184 112
Cortex-M4† Poly1305-ChaCha20 2997 7.5 2240 236

Cortex-M4 [27] AES128-GCM 43657 _ 2644 812
Cortex-M4 [27] AES128-EAX 32159 _ 2780 932
Cortex-M4 [27] AES128-CCM 23949 _ 2256 780
Cortex-M4 [27] NORX32 6855 _ 1820 320
Cortex-M4 [14] ChaCha20-Poly1305 3364 28.4 1946 332

Cortex-M4† ChaCha20-Poly1305 4762 31.5 2596 380

† Our implementation.
‡ These results were obtained by including the π-ChaCha20 function
(cf. https://github.com/joostrijneveld/chacha-arm-cortex-m/) in source code of De Santis et al [14].{

r_limbmax ∈ {0, 1}160 = (0x3ffffff,0x3ffff03,0x3ffc0ff,0x3f03fff,0x00fffff)
h_limbmax ∈ {0, 1}160 = (0x3ffffff,0x3ffffff,0x3ffffff,0x3ffffff,0x3ffffff)

(6)

Table IV
Comba-Derived Modular Multiplication of a 26-bit 5-limb

Structure

a4 a3 a2 a1 a0
× b4 b3 b2 b1 b0

a4*b0 a3*b0 a2*b0 a1*b0 a0*b0
a3*b1 a2*b1 a1*b1 a0*b1 a4*b1*5
a2*b2 a1*b2 a0*b2 a4*b2*5 a3*b2*5
a1*b3 a0*b3 a4*b3*5 a3*b3*5 a2*b3*5
a0*b4 a4*b4*5 a3*b4*5 a2*b4*5 a1*b4*5

s4 s3 s2 s1 s0

cedures on handling different perception data types
of various IoT applications and purposes. With pat-
ternability in the frame organization, advanced data
exchange schemes can be constructed for such data
exchange of handshaking and firmware over-the-air
(FOTA) in future development.
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