
IEEE SAMPLES, VOL. X, NO. Y, MARCH 2024 1

Performance Evaluation of a Decentralized
Learning Architecture for PCB Defect Classification

Abstract—Printed circuit board (PCB) defect detection, which
is an important task in industrial factories, receives great
attention from both researchers and practitioners. To achieve
high detection accuracy, the traditional training method requires
data collection from multiple industrial factories. However, in
practice, factories possess their own data and do not want to
share the private data with other participants. Therefore, we
introduce a decentralized learning method that makes use the
knowledge of clients in the system. By leveraging the federated
learning technique, a consensus global detection model can be
produced while maintaining data privacy. We have conducted
extensive experiments to evaluate the detection performance
under various learning methods: federated learning, centralized
learning, and local learning. We also compare the detection
performance of two well-known detection models: YOLOv5 and
YOLOv8. The experimental results show that the federated
learning based method yields better detection performance than
the local learning.

Index Terms—PCB defect detection, federated learning, deep
learning

I. INTRODUCTION

A printed circuit board (PCB) is a fundamental compo-
nent in modern electronics, playing as a platform to connect
and support electronic components. To make sure that PCB
operates properly, PCB defects need to be detected before
deploying PCB in real devices. Common PCB defects include
missing holes, open circuits, short circuits, spur, mouse bite,
and breakout, which can be detected using the naked eye.
Thank to the advanced development of computer vision, the
PCB defect detection model can be constructed using deep
learning models, thus supporting automatic verification at
manufacturing sites and enhancing the PCB defect detection
performance. In this work, we assume that there are multiple
factories and each factory obtains a set of PCB defects data.
Our work aims to answer the following question: How to train
a PCB fault detection model using multiple supervised data
from various distributed factory sites?

To build a PCB defect detection model, the traditional
centralized training method first requires supervised data to
be shared with the server [1]. Then, the detection model is
trained at a centralized server by minimizing a custom loss
function via multiple training epochs. The training procedure
is terminated when there is no improvement in detection
performance. Although the PCB fault detection model shows
high performance in localizing and detecting PCB defects,
the centralized training method suffers from the data privacy
problem. Moreover, sending a large amount of data to the
server requires high communication bandwidth, which may
be difficult, especially for edge computing devices.

To overcome the problem of data privacy and high com-
munication bandwidth in the conventional training method,

we leverage the federated learning (FL) paradigm that allows
collaborative training of a global deep learning model without
directly exchanging the training data [2], [3]. Particularly, at
the beginning of training, a global model, which can be pre-
trained, is selected and shared with all participating factories.
Then, at each training epoch, clients update their models using
the private data and then send the updated local models to the
server. Finally, the server performs model aggregation before
distributing a new global model to other clients. If training
properly, the FL architecture can produce similar performance
compared to the centralized training method while protecting
the data privacy of participants. Therefore, we introduce and
evaluate the distributed learning-based PCB defect detection
architecture.

To verify the proposed FL-based PCB defect detection
model, we select a PCB defect dataset [4] with 693 synthetic
images and more than 2,500 faults instances. The YOLOv5
and YOLOv8 models are selected for the experiment due to the
feasibility of these models at edge devices. In our experiments,
three different learning strategies are considered: centralized,
federated, and local learning. In centralized learning, the data
from local devices is shared with a central server where the
defect detection model is trained. Meanwhile, in federated
learning, a global model is created at the central server without
sharing private data between clients. Finally, in local learning,
a local detection model is trained using only the private dataset
at the local device.

First, the performance of centralized detection models based
on YOLOv5 and YOLOv8 is evaluated. The performance
results show that YOLOv8 achieves higher detection accuracy
and converges faster than YOLOv5. Therefore, YOLOv8 is
used as the default detection model for other experiments.
Then, we analyze the accuracy of the centralized YOLOv8
detection model on a real board. Finally, we compare the
detection performance of the YOLOv8 model using two learn-
ing methods: federated learning and local learning. The FL-
based detection model shows superior performance to the local
model, which is trained using the private dataset.

The rest of the paper is constructed as follows. Section II
provides a brief introduction to the YOLOv5 model for object
detection followed by federated learning-based models for
fault detection. Then, we explain the PCB defect detection
architecture based on distributed learning in Section III fol-
lowed by the performance evaluation in Section IV. Finally,
we give the conclusion of our work and discuss the potential
work of PCB defect detection in Section V.

II. RELATED WORK

In this section, we analyze the underlying detection archi-
tecture and the training procedure of the YOLOv5 detection



IEEE SAMPLES, VOL. X, NO. Y, MARCH 2024 2

model. Then, we summarize some studies related to the FL-
based fault detection problem in industry and PCB fault
detection models.

A. YOLOv5 Architecture

There are two types of object detection models: two-stage
and one-stage detectors. In both detectors, we have a backbone
network to extract features from images and reduce feature
dimension. Common backbone networks are VGG [5], CSP-
Darknets [6], ResNet [7]. In two-stage detectors, region pro-
posals are first generated and followed by object classification
for each region proposal. Meanwhile, instead of the region
proposal generator, the one-stage detectors contain a detection
generator after the feature extraction block or model head.
Therefore, two-stage detectors usually achieve higher accuracy
but slower than one-stage detectors. In this work, we focus on
one-stage detectors such as YOLOv5 or YOLOv8 since they
are suitable for edge-devices at industrial factories.

The architecture of YOLO v5 is shown in Figure 1. The
YOLOv5 model consists of 3 components: CSP-Darknet53
as a backbone, SPP and PANet in the model neck, and the
head of three convolutional layers. CSP-Darknet53 is just
the convolutional network Darknet53 used as the backbone
for YOLOv3 to which the authors applied the Cross Stage
Partial (CSP) network strategy. CSP network makes use of
the advantage of DenseNet’s feature reuse characteristics while
reducing the great amount of redundant gradient paths. CSP
divides the input feature maps into two parts and only one part
will go to the dense block, thus reducing the model complexity.

Spatial Pyramid Pooling (SPP) block concatenates the in-
formation from the inputs and returns an output with a fixed
length. SPP allows us to increase the receptive field without
sacrificing network speed. There are three max-pooling blocks
in SPP, which generate feature maps with different sizes. These
feature maps are combined before feeding into a convolutional
block. The model head is composed of three convolutional
layers with the number of channels c = nanchors(5+nclasses),
where nanchors, nclasses are the number of anchors and the
number of classes. nanchors is typically set to 3. The combi-
nation of outputs of these convolutional layers produces the
final detection including the localization and classification.

The loss function l used to train YOLOv5 contains three
main components: Bounding box regression loss, object-
ness loss, and classification loss. We explain each compo-
nent of the loss function based on the code provided at
https://github.com/ultralytics/yolov5. The bounding box re-
gression loss LGIOU or the localization loss is computed as:

LGIOU = λloc

(
1− (IOU − C \ (A ∪B)

C
)

)
(1)

where IOU is the intersection over union ratio between the pre-
dicted bounding box A and the truth bounding box B, which
indicates localization accuracy of predictions. Meanwhile, C is
the smallest enclosing box of A and B; λloc is the coefficient
for the localization loss.

The classification loss measures the inaccuracy of the clas-
sification task using the binary cross-entropy loss as below:

Lclass = λclass

S2∑
i=0

B∑
j=0

Iobji,j

nclasses∑
c=1

(
pi(c)logp̂(c)+

(1− pi(c))log(1− p̂(c))

) (2)

where λclass is the coefficient for the classification loss, S2

is the number of grids, and B is the number of anchors. If
the anchor box at grid (i, j) contains at least a target, then the
value Iobji,j is set to 1; otherwise, the value is 0. p̂(c) indicates
the predicted probability of the target, and pi(c) is the true
value of the category.

Finally, the objectiveness loss is also based on binary cross-
entropy loss and it is used to measure the error in detecting if
an object appears in a grid cell.

Lobj = λobj

S2∑
i=0

B∑
j=0

Iobji,j

(
IOUi,j logp̂′+

(1− IOUi,j)log(1− p̂′)

) (3)

where λobj is defined as the coefficient of the objectiveness
loss and IOUi,j is the intersection over union ratio at grid
cell i and anchor j. Meanwhile, p̂′ is the predicted object
probability at grid cell i and anchor j.

For performance evaluation, we use the following metrics:
precision, recall, mAP50, and mAP50-95. Precision presents
the percentage of correct predictions and all positive predic-
tions. Meanwhile, recall indicates the percentage of predicted
defects and the actual defects. mAP50 is defined as the mean
of average precision calculated at the intersection over union
(IoU) threshold of 0.5. Finally, mAP50-95 refers to the mean
of mAP calculated when the threshold changes from 0.5 to
0.95.

B. Federated Learning for Defect Detection Problem

In the literature, some research papers implemented FL
for the fault detection problem such as [8]–[10]. In [8], they
argued that the existing data-driven machinery fault diagnosis
methods required the collection of high-quality supervised data
for training. In fact, it is difficult to collect data from multiple
factories and send the data to a centralized server due to
data privacy concerns. To improve the distributed learning
performance, a validation set is used to verify the model
update made by each participating client. If a local model
produces low validation performance, it may not be used for
model aggregation at the centralized server. The proposed
FL architecture was evaluated using two rotating machinery
datasets and performance results are promising in terms of
data privacy and distributed learning.

Jiang et. al introduced the problem of insulator fault de-
tection using a data privacy-preserving FL architecture. Two
different networks including fully connected neural networks
and convolutional neural networks are evaluated for insulator



IEEE SAMPLES, VOL. X, NO. Y, MARCH 2024 3

Conv-BN-SiLU
6, 2, 2, c64

Conv-BN-SiLU
3, 2, None, c256

Conv-BN-SiLU
3, 2, None, c128

C3
BottleNeck1 x3 

Conv-BN-SiLU
3, 2, None, c512

C3
BottleNeck1 x6

Conv-BN-SiLU
3, 2, None, c1024

C3
BottleNeck1 x9

Input Image: 640x640x3

320x320x64

160x160x128

160x160x128

C3
BottleNeck1 x3

80x80x256

80x80x256

40x40x512

P1

P2

P3

P4

P5

SPPF

40x40x512

20x20x1024

Conv-BN-SiLU
1, 1, None, c512

Upsample

Concat

C3
BottleNeck2 x3

Conv-BN-SiLU
1, 1, None, c256

Concat

Upsample

C3
BottleNeck2 x3

20x20x51220x20x1024

20x20x1024

40x40x512

40x40x1024

40x40x512

40x40x512

80x80x512
Conv-BN-SiLU
1, 1, None, c256

Concat

C3
BottleNeck2 x3

Conv-BN-SiLU
1, 1, None, c512

Concat

C3
BottleNeck2 x3

Conv-BN-SiLU
1, 1, None

Conv-BN-SiLU
1, 1, None

Conv-BN-SiLU
1, 1, None

80x80x256

40x40x512

20x20x1024

80x80xc

40x40xc

40x40xc

Conv-BN-SiLU
k, s, p, c

Conv-BN-SiLU
k, s, p, c

Conv-BN-SiLU
k, s, p, c

BottleNeck 1

Concat

Conv-BN-SiLU
k, s, p, cC3

MaxPool2d MaxPool2d MaxPool2d Conv-BN-SiLU
k, s, p, c512

Concat

Conv-BN-SiLU
k, s, p, c1024SPPF

Fig. 1: Architecture for PCB Defects Detection



IEEE SAMPLES, VOL. X, NO. Y, MARCH 2024 4

fault detection. The distributed learning method achieves simi-
lar performance on a collected insulator fault detection dataset
compared to the centralized learning one.

A wind turbine fault detection method based on FL that
jointly trains a global fault detection model was presented
in [10]. Unlike conventional training, the FL-based model
does not require communication data shared by local wind
turbines. In addition, a multi-scale residual attention network
model is used to extract multi-scale spatial features from
raw sensor data that are related to each fault. The designed
decentralized training paradigm shows similar performance to
the conventional learning method while protecting data privacy
from wind turbines.

C. Research on PCB Defect Detection

The authors in [11] summarize multiple PCB defect detec-
tion methods based on image processing, machine learning,
and deep learning. Image processing detection approaches
can be classified into three categories: reference comparison,
non-reference inspection, and hybrid inspection methods. The
most widely used method in the manufacturing industry is
reference comparison in which we compare the difference
between the reference and the examined images to find defects
in PCBs. Meanwhile, in the non-reference approach, a pre-
defined closed-form expression is proposed to detect PCB
defects. Finally, the hybrid method combines both reference
comparison and non-reference inspection methods. In machine
learning-based methods, features are mainly extracted by
traditional image processing operations such as edge detec-
tion, morphological processing, various image thresholding
techniques. Then, these features are sent to machine learn-
ing models such as support vector machine, neural network,
genetic algorithm, and decision tree. As a result, the detection
accuracy of machine learning-based methods highly depends
on extracted features.

Recently, deep learning-based methods, especially convo-
lutional neural networks (CNNs), have been widely used in
image processing, object detection, and segmentation [12].
Unlike traditional machine learning methods, CNN-based
approaches can automatically extract image features, thus
enhancing detection accuracy and speed. Particularly, CNN-
based object detection algorithms are usually robust to noise.
Therefore, deep learning algorithms have been widely used by
researchers for PCB defect detection to achieve high detection
performance. Zheng et al. [13] add successive convolutional
modules into the MobileNetV2 architecture and this integra-
tion, combined with an improved skip connection, significantly
improves detection speed and accuracy compared to VGG-16
and ResNet-50 models. Lim et al. [14] developed a novel
multi-scale feature pyramid network based on YOLOv5 to
tackle the detection of PCB defects. They also incorporated the
CIoU loss function to precisely determine the spatial parame-
ters, effectively finding the exact locations of these imperfec-
tions. Furthermore, Yu et al. [15] introduced a lightweight and
efficient network architecture specifically tailored for detecting
PCB defects. They introduced the diagonal feature pyramid
mechanism to obtain feature maps to enhance fault detection.

Additionally, they devised a multi-scale necking network to
accommodate defects of different sizes.

III. FEDERATED LEARNING FOR PCB DEFECT
CLASSIFICATION IN INDUSTRIAL FACTORIES

We present a cross-silo FL-based architecture for PCB fault
detection that can be used at multiple distributed factories.
There are two computing levels: edge and cloud. Assume that
the edge layer contains multiple industrial factories where
electronic devices are manufactured such as mobile phones,
computers, transmitters, and receivers as shown in Figure 2.
The global detection model is built with the support of a
cloud server where an aggregation algorithm is used to update
the global model at each training epoch. At the participating
factories, there is a requirement for the detection of any fault
caused by electronic devices. Each company or factory usually
possesses a private PCB defects dataset and they do not want
to send their data to other companies. Instead, an aggregation
global model is constructed based on local model updates
from all factories without sharing the raw datasets with other
participants.

The training procedure is described as follows. At the be-
ginning of the training, the cloud server selects and initializes
a global model. We assume that a pre-trained global model
is used to accelerate the training process. Then, the initial
global model is distributed to all participating factories in the
network. At a training epoch, each factory trains the detection
model using its private dataset and then sends the model update
to the cloud server. The model update may be the parameters
gradient or the real network parameters. In the cloud server,
after receiving the model updates from all participants, an
aggregation model such as FedAvg [16], FedProx [17], or
SCAFFOLD [18] is used to generate a newly consensus global
model. A similar procedure continues at the next training
epoch until the global model converges or the number of
training epochs exceeds a threshold value.

After obtaining a consensus global model, the cloud server
shares this global model with all industrial factories for the
inference phase. The PCB defect detection model is executed
at each factory site close to the product manufacturing line.
Therefore, the detection time is expected to be lower than the
case of sending raw images of PCB to external devices for
examination. Moreover, since the global model is generated
by using model updates from all participating factories, the
detection performance is enhanced compared to the local
learning technique, which is built using the dataset from only
one factory. In summary, by using two computing layer FL-
based architecture, we leverage the computing capacity of
both layers while maintaining data privacy and achieving more
accurate detection performance and lower detection time than
the local learning model.

IV. PERFORMANCE EVALUATION

In this section, we first present the dataset for performance
evaluation followed by performance comparison between cen-
tralized detection models based on YOLOv8 and YOLOv5.
We also show the visualization of PCB defect detection on a



IEEE SAMPLES, VOL. X, NO. Y, MARCH 2024 5

Cloud Server

Model Update
Global Model

Aggregated
model

Factory 1 Factory 2 Factory 3

Local
datasets

Fig. 2: Federated Learning for PCB Defects Detection

real PCB. Then, the performance of the federated and local
learning models is verified and compared. The experiments are
conducted on a PC with Intel Core i7-9700 and 16 GB RAM.

A. The PCB Defects Dataset

We consider a public synthetic PCB defects dataset [4]
with six fault types: Missing hole, mouse bite, open cir-
cuit, short, spur, and spurious copper. We summarize the
defect distribution in Table I. The dataset can be downloaded
from https://robotics.pkusz.edu.cn/resources/dataset/. Figure 3
shows some examples of these defects. We randomly divide
the dataset into the training and validation sets with the ratio
8:2. The experimental results are collected on the validation
set.

TABLE I: The class distribution in the dataset

Defect Name #Images #Instances
Missing hole 115 420
Mouse bite 115 430
Open circuit 116 414

Short 116 410
Spur 115 426

Spurious copper 116 434
Sum 693 2,534

Fig. 3: Examples of PCB defects in the dataset [1]

B. Detection Performance Comparison between YOLOv8 and
YOLOv5

The training parameters are set as follows. The image size
and batch size are 640x640 and 16, respectively. The number
of epochs is set to 80. Other parameters use default values
as shown in the official website of Ultralytics. For YOLOv5s,
the number of network parameters is 7.2M and the training



IEEE SAMPLES, VOL. X, NO. Y, MARCH 2024 6

time is 4.539 hours. Meanwhile, YOLOv8s contains 11.13M
parameters and the training time is 5.677 hours.

Figures 4 and 5 present learning curves of YOLOv5s
and YOLOv8s models. The six left figures on both rows
show bounding box regression, objectiveness, and classifica-
tion losses while the four right figures on both rows present
precision and recall, mAP 0.5 and mAP 0.5-0.95. During
training epochs, in both YOLOv5 and YOLOv8, bounding
box regression, objectiveness, and classification losses de-
crease gradually while performance metrics increase generally.
YOLOv5 converges at around epoch 60 while the performance
of YOLOv8 is saturated at roughly epoch 40, which means that
YOLOv8 converges more quickly than YOLOv5.

After each training epoch, the currently best performance is
recorded. Tables II and III show the final results of YOLOv5
and YOLOv8, respectively, after 80 training epochs. Gener-
ally, YOLOv8 produces higher performance than YOLOv5,
especially in terms of recall, mAP50, and mAP50-95. More
specifically, the recall of YOLOv8 is nearly 9% higher than
that of YOLOv5. Recall values of YOLOv8 for all defect
classes are superior to that of YOLOv5. For example, for the
spurious copper defect, recall of YOLOv8 is around 67.9%
compared to 54.3% of YOLOv5. Since YOLOv8 produces
better results than YOLOv5, we use YOLOv8 as the default
model for other experiments.

The confusion matrix at the IOU threshold of 0.25 is
presented in Figure 6. The highest detection accuracy of 96%
belongs to missing holes. Meanwhile, spurious copper defects
have the lowest detection accuracy of 69%. Totally, the average
accuracy on the validation set is 379

448 = 84.5%.

TABLE II: The best results of the YOLOv5 model

Defect Precision Recall mAP50 mAP50-95
Missing hole 1 0.891 0.956 0.382
Mouse bite 0.969 0.78 0.921 0.429
Open circuit 0.939 0.654 0.778 0.376

Short 0.844 0.797 0.785 0.258
Spur 0.972 0.679 0.746 0.310

Spurious copper 0.936 0.543 0.707 0.263
Total 0.943 0.724 0.815 0.336

TABLE III: The best results of the YOLOv8 model

Defect Precision Recall mAP50 mAP50-95
Missing hole 0.970 0.911 0.939 0.387
Mouse bite 0.986 0.914 0.939 0.493
Open circuit 0.981 0.843 0.899 0.45

Short 0.813 0.809 0.795 0.326
Spur 1 0.715 0.855 0.352

Spurious copper 0.92 0.679 0.755 0.346
Total 0.945 0.812 0.864 0.387

Next, we verify the performance of YOLOv8 model on a
real board as shown in Figure 7. YOLOv8 accurately detects
three open-circuit defects with high probability. Meanwhile,
the model only detects two out of three missing holes and
some resistors are wrongly classified as missing holes. The
main reason for this observation is that the training images do
not contain any resistor. Hence, the YOLOv8 model could not
learn resistor features. In future work, we collect more training

data, especially real PCBs, and re-train the YOLOv8 model to
improve detection performance.

C. FL-based PCB Fault Detection Performance

Assume that there are two participants who collaboratively
train the global PCB fault detection model. The dataset is
randomly divided into two parts and each part belongs to a
particular client. We consider two settings A and B for the
FL-based detection model. In setting A, each factory contains
240 training images and there are 63 shared images between
factories. The overlapping percentage of the shared images is
63

417
= 15.1%. Meanwhile, in setting B, each factory contains

300 training images and the percentage of shared training data
is 43.8%. At each training epoch, the clients update the local
models using their private dataset and share the local models
with the cloud server. Then, the cloud server leverages FedAvg
to combine local models and generate the consensus global
model. The number of training epochs is set to 80.

Now, we compare the detection performance of FL-based
architecture with local learning that uses only the dataset of
one factory to train a local model. In this experiment, the
FL setting A is used. As can be seen in Figure 8, the FL-
based accuracy is 333

448 = 74.3% compared to the local model
performance of 303

448 = 67.6%. Thanks to the shared knowledge
between local devices, the FL-based detection method can
achieve higher performance than the local model. Even though
the FL-based detection model achieves higher detection results
than the local learning method but quite lower than the
centralized learning one. The reason can be the lack of training
samples in each client or the distribution difference between
local datasets [19].

To enhance the performance of FL-based detection model,
we increase the number of training samples in each client
from 240 (setting A) to 300 (setting B). Table IV shows the
performance of detection models with the highest performance
on the validation set in terms of mAP50. Table IV contains
six rows corresponding to six different models: local learning-
based model, FL-based model with setting A on device 1,
FL-based model with setting A on device 2, FL-based model
with setting B on device 1, FL-based model with setting B
on device 2, centralized learning-based model. The experi-
mental results show that the centralized learning-based model
achieves the highest detection performance followed by the
FL-based model and local learning-based model. Particularly,
using more training samples in each client results in higher
detection performance. For example, on device 1, the mAP50
of the FL-based model with setting A is 0.71 compared to
0.751 on setting B.

To further evaluate the impacts of the number of train-
ing samples on detection performance, Figure 9 shows the
learning curves of FL models with two settings A and B.
The experimental results indicate that the detection model
converges faster using setting B than setting A. In addition,
precision, recall, mAP values can be improved when more
training samples are shared between clients.



IEEE SAMPLES, VOL. X, NO. Y, MARCH 2024 7

Fig. 4: Learning curves on the training and validation sets with the centralized YOLOv5s model.

Fig. 5: Learning curves on the training and validation sets with the centralized YOLOv8s model.

TABLE IV: Performance Comparison between Detection Models

Metric Precision Recall mAP50 mAP50-95
Local learning 0.915 0.560 0.715 0.322

FL, setting A, device 1 0.896 0.618 0.710 0.284
FL, setting A, device 2 0.906 0.592 0.733 0.313
FL, setting B, device 1 0.850 0.689 0.751 0.345
FL, setting B, device 2 0.916 0.664 0.763 0.345

Centralized learning 0.943 0.724 0.815 0.336



IEEE SAMPLES, VOL. X, NO. Y, MARCH 2024 8

Fig. 6: Confusion matrix on the validation set with the
centralized YOLOv8 model

Fig. 7: Performance evaluation on the collected dataset

V. CONCLUSION

In this work, we leverage the federated learning technique
for PCB defect detection by constructing a global model using
shared local updates from multiple factories. FL can preserve
data privacy, which is an essential problem in machine learn-
ing. The FL-based PCB fault classification model is evaluated
and compared with two other learning techniques: centralized
and local learning. The experimental results show that the FL-
based model produces higher performance than local learning
but lower than centralized learning. In future work, we plan to
improve the FL-based PCB defect detection architecture such
that the performance of the FL-based model approaches that
of the centralized detection model.

REFERENCES

[1] A. Bhattacharya and S. G. Cloutier, “End-to-end deep learning frame-
work for printed circuit board manufacturing defect classification,”
Scientific reports, vol. 12, no. 1, p. 12559, 2022.

[2] D. C. Nguyen, M. Ding, P. N. Pathirana, A. Seneviratne, J. Li, and
H. V. Poor, “Federated learning for internet of things: A comprehensive
survey,” IEEE Communications Surveys & Tutorials, vol. 23, no. 3, pp.
1622–1658, 2021.

[3] Q. Li, Z. Wen, Z. Wu, S. Hu, N. Wang, Y. Li, X. Liu, and B. He, “A
survey on federated learning systems: Vision, hype and reality for data
privacy and protection,” IEEE Transactions on Knowledge and Data
Engineering, 2021.

[4] W. Huang and P. Wei, “A pcb dataset for defects detection and
classification,” arXiv preprint arXiv:1901.08204, 2019.

[5] K. Simonyan and A. Zisserman, “Very deep convolutional networks for
large-scale image recognition,” arXiv preprint arXiv:1409.1556, 2014.

[6] A. Bochkovskiy, C.-Y. Wang, and H.-Y. M. Liao, “Yolov4: Op-
timal speed and accuracy of object detection,” arXiv preprint
arXiv:2004.10934, 2020.

[7] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image
recognition,” in Proceedings of the IEEE conference on computer vision
and pattern recognition, 2016, pp. 770–778.

[8] W. Zhang, X. Li, H. Ma, Z. Luo, and X. Li, “Federated learning for
machinery fault diagnosis with dynamic validation and self-supervision,”
Knowledge-Based Systems, vol. 213, p. 106679, 2021.

[9] G. Jiang, W. Fan, W. Li, L. Wang, Q. He, P. Xie, and X. Li, “Deepfedwt:
A federated deep learning framework for fault detection of wind
turbines,” Measurement, vol. 199, p. 111529, 2022.

[10] Z. Luan, Y. Lai, Z. Xu, Y. Gao, and Q. Wang, “Federated learning-based
insulator fault detection for data privacy preserving,” Sensors, vol. 23,
no. 12, p. 5624, 2023.

[11] Q. Ling and N. A. M. Isa, “Printed circuit board defect detection meth-
ods based on image processing, machine learning and deep learning: A
survey,” IEEE Access, 2023.

[12] X. Chen, Y. Wu, X. He, and W. Ming, “A comprehensive review of deep
learning-based pcb defect detection,” IEEE Access, 2023.

[13] J. Zheng, X. Sun, H. Zhou, C. Tian, and H. Qiang, “Printed circuit
boards defect detection method based on improved fully convolutional
networks,” IEEE Access, vol. 10, pp. 109 908–109 918, 2022.

[14] J. Lim, J. Lim, V. M. Baskaran, and X. Wang, “A deep context learn-
ing based pcb defect detection model with anomalous trend alarming
system,” Results in Engineering, vol. 17, p. 100968, 2023.

[15] Z. Yu, Y. Wu, B. Wei, Z. Ding, and F. Luo, “A lightweight and efficient
model for surface tiny defect detection,” Applied Intelligence, vol. 53,
no. 6, pp. 6344–6353, 2023.

[16] B. McMahan, E. Moore, D. Ramage, S. Hampson, and B. A. y Arcas,
“Communication-efficient learning of deep networks from decentralized
data,” in Artificial intelligence and statistics. PMLR, 2017, pp. 1273–
1282.

[17] T. Li, A. K. Sahu, M. Zaheer, M. Sanjabi, A. Talwalkar, and V. Smith,
“Federated optimization in heterogeneous networks,” Proceedings of
Machine learning and systems, vol. 2, pp. 429–450, 2020.

[18] S. P. Karimireddy, S. Kale, M. Mohri, S. Reddi, S. Stich, and A. T.
Suresh, “Scaffold: Stochastic controlled averaging for federated learn-
ing,” in International conference on machine learning. PMLR, 2020,
pp. 5132–5143.

[19] Y. Zhao, M. Li, L. Lai, N. Suda, D. Civin, and V. Chandra, “Federated
learning with non-iid data,” arXiv preprint arXiv:1806.00582, 2018.



IEEE SAMPLES, VOL. X, NO. Y, MARCH 2024 9

(a) (b)

Fig. 8: Performance comparison between two learning techniques (a) local learning and (b) federated learning.

(a) (b)

Fig. 9: Performance comparison between two FL-based model settings: (a) the ratio of shared data is 0.151 and (b) the ratio
of shared data is 0.438.


