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Abstract– Cardiovascular diseases remain a leading cause of death worldwide, which results in important requirements
for early and accurate arrhythmia diagnosis. This work proposes a novel design of automated heartbeat detection, which
consists of a convolutional neural network (CNN) and three-channel images using the electrocardiogram (ECG) signals. A
combination of various preprocessing is applied for the elimination of interferences of the ECG signals such as band-pass
filtering and wavelet transform for R-peak identification using a sliding window. Multimodal image fusion method is used
to construct three-channel images from different grayscale images, which are transformed from the heartbeats by three
transformation techniques namely Gramian angular field, Markov transition field, and Recurrence plot. Grid-search based
optimization method in combination with 5-fold cross validation procedure are implemented for selection of the optimal
hyper-parameters of the CNN models using the input three-channel images. The proposed algorithm including CNN models
and markov transition field images is estimated the detection performance using 5-fold cross validation, which produces
average accuracy of 99.63%, precision of 99.41%, recall of 99.52%, and F1-score of 99.64%. The relatively high performance
of the proposed algorithm confirms the effectiveness for the arrhythmia recognition on the ECG signals.

Keywords– Cardiovascular diseases, electrocardiogram noise filter, multimodal image fusion, deep learning, heartbeat
classification.

1 Introduction

Cardiovascular diseases (CVDs) are among the leading
causes of death worldwide, encompassing conditions
such as coronary artery disease, heart failure, and
arrhythmias. There are a large number of factors which
have important impact on these heart diseases such
as hypertension, diabetes, obesity, and an unhealthy
lifestyle [1]. Early detection and proper management
of CVDs are essential to reduce mortality rates and
improve patient quality of life. Nowadays, advances in
artificial intelligence and signal processing applied for
medical fields, have significantly enhanced the diagno-
sis and treatment of the above diseases.

Electrocardiogram (ECG) has been widely used for
non-invasive techniques to monitor heart activities [2].
Indeed, ECG provides valuable information about heart
rhythms, conduction abnormalities, and possible car-
diovascular conditions such as arrhythmias and my-
ocardial infarction. Due to its simplicity and effec-
tiveness, ECG is commonly used in clinical settings
and wearable health-monitoring devices, which adopt
state-of-the-art deep learning and machine learning to
enable automated ECG analysis, improving accuracy
and efficiency in detection of the heart diseases [3].

Despite significant technological advances, the utility
of ECG signals still presents several challenges. One
major issue is the susceptibility to various sources of
noises, including external interferences such as baseline
drift caused by medical equipment inaccuracies and
internal disruptions from physiological activities like

muscle contractions. These noise artifacts can obscure
critical details, such as the exact position of ECG peaks,
making arrhythmia detection more complex and po-
tentially leading to misinterpretations during clinical
assessments. Another challenge lies in the intricate
nature of ECG signals, which require specialized ex-
pertise to analyze correctly. This complexity makes it
difficult for non-experts to leverage ECG data effec-
tively to detect heart conditions. Consequently, the de-
mand for automated solutions has grown substantially.
Over time, numerous noise reduction techniques have
been introduced such as conventional filtering methods,
adaptive filtering, and singular value decomposition-
based approaches [4]. Clearly, these techniques have
demonstrated their effectiveness but inherent draw-
backs are still available. Indeed, standard filters such
as low-, high-pass, and notch filters may inadvertently
eliminate important signal components during noise
reduction process, which definitely results in signal
distortion [5]. Although adaptive filtering is powerful, it
can be computationally intensive and highly dependent
on precise parameter adjustments.

In recent years, machine learning has become in-
creasingly important in arrhythmia diagnosis, owing
to its ability to detect complex patterns in large ECG
datasets. There are numerous studies, which prove the
effectiveness of machine learning methods for classi-
fication of various arrhythmia types. Decision trees,
support vector machines (SVM), and k-nearest neigh-
bors (KNN) have been successfully used to identify
abnormal heart rhythms with promising results. The
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authors of [6] propose an ensemble-based SVM model
to categorize heartbeats into four classes using features
such as wavelets, high-order statistics, R-R intervals,
and morphological characteristics. This approach out-
performs the other baseline models such as individual
SVM, Random Forest, and KNN, achieving the highest
accuracy of 94.4%. In [7], Fourier decomposition and
phase transform are applied to extract key features
from ECG signals, which capture both inter- and intra-
beat variations. The proposed method produces an
impressive accuracy of 97.92% on the MIT-BIH dataset.
However, there are significant challenges which need to
be solved using machine learning models and complex
biomedical data such as ECG signals. One of main
limitations is their dependence on extensive feature en-
gineering required human expertise to manually extract
relevant features. Moreover, feature engineering is a
time-consuming process and prone to errors. In addi-
tion, traditional machine learning approaches struggle
to capture the inherently temporal dependencies of the
ECG signals, hindering their ability to generalize across
various arrhythmia types.

To overcome the limitations of traditional machine
learning methods, deep learning has emerged as a
superior approach for the arrhythmia detection. Un-
like conventional machine learning techniques, deep
learning models such as Convolutional Neural Net-
works (CNN) and Long Short-Term Memory Networks
(LSTM) can automatically learn features directly from
raw ECG signals, eliminating the need for manual
feature extraction. In [8], discrete wavelet transform is
used to extract statistical features, followed by classi-
fication using a multilayer perceptron neural network
with backpropagation. This approach effectively dis-
tinguishes between normal and abnormal ECG sig-
nals from the MIT-BIH Arrhythmia and Apnea ECG
databases, which obtains an overall accuracy of 94.44%.
The authors of [9] demonstrate the effectiveness of a
1D-CNN model including three convolutional layers,
max-pooling layers, and dense layers to extract non-
linear features from ECG data and classify them into
five categories. The evaluated accuracy of this study
is 97.36% on the MIT-BIH database with 47 subjects
using 5-fold cross-validation method. However, deep
learning models show important drawbacks when us-
ing noisy ECG signals or incomplete data. More spe-
cific, the utility of noisy ECG signals as the input
of the deep learning model possibly results in low
recognition performance in practical scenarios. Besides,
it is necessary to perform extensive computations for
the deep learning model using directly the raw ECG
signals, which leads to long training time and high
computational cost. Consequently, this poses an essen-
tial obstacle for the real medical applications, which
requires frequently rapid process with limited compu-
tational resources.

In this work, we propose a novel algorithm for the ar-
rhythmia recognition including three-channel images as
the input of the deep learning models. The images are a
combination of three transformed grayscale images by
Gramian angular field (GAF), Markov transition field

(MTF), and Recurrence plot (RP) methods to improve
the feature representation in terms of heartbeat types
in the ECG signals. Mover, heartbeats are selected
carefully by a sliding window of 360 samples from
the ECG signals which are preprocessed by band-pass
filtering and wavelet transform to effectively remove
interferences. The main contributions of our work are
as follows:

• Development of an efficient noise reduction by
utility of combined filtering methods namely band-
pass filtering and Wavelet transform to improve the
quality of ECG signals while maintaining critical
features of QRS complexes, P, and T waves.

• Improvement of the image feature representation
by the utility of the multimodal image fusion
method to integrate different gray images as the
outputs of various transformation techniques such
as GAF, MTF, and RP.

• Proposal of a high-performance arrhythmia recog-
nition algorithm using state-of-the-art techniques
and ECG signals, which is reliable for clinical
application in healthcare environments.

The rest of the paper is organized as follows: The
description of the data used in this study is given in
Section II followed by the methodology proposed in
Section III. The simulation results and discussion are
presented in Sections IV and V. Section VI shows the
conclusive remarks of this work.

2 Data

Following the guidelines set by the Association for
the Advancement of Medical Instrumentation (AAMI),
we utilize the MIT-BIH Arrhythmia dataset from
PhysioNet databases for this work [10]. The dataset
is widely used as benchmark data for classification
and validation of heartbeat recognition ensuring the
reliability and comparability of different approaches.
There are 48 ECG recordings from 47 subjects, each
lasting 30 minutes and sampled at 360 Hz on two leads
(V and II) in the MIT-BIH database. In this study, we
specifically consider lead II due to clear representation
of key ECG waveform components, which makes it fit
in ECG beat extraction and classification. In addition,
the dataset includes detailed annotations of arrhythmia
types and R-peak locations, which are meticulously
reviewed and confirmed by reliable cardiologists. These
high-quality annotations are essential to ensure precise
labeling, facilitate robust model training, and enhance
the accuracy of arrhythmia detection [3–6].

3 Research Method

The proposed methodology is shown in Figure. 1,
which consists of three main phases: data and prepro-
cessing, transformation, and model evaluation.

- In the data and preprocessing phase, the raw ECG
signals are processed by a series of enhancement tech-
niques to obtain high-quality signals for subsequent
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Figure 1. Method diagram

analysis. At first, bandpass filtering is applied to re-
move baseline wander and high-frequency noise. Then,
the wavelet transform is employed for denoising the
signal while preserving key morphological features.
Furthermore, Min-Max normalization is used to scale
the signal values between 0 and 1, ensuring consistency
across the dataset. The R peak detection and optimized
segmentation window are performed to identify critical
points of the ECG signal and to extract individual
heartbeats, respectively, generating a structured and
standardized dataset.

- In the transformation phase, heartbeats are con-
verted into different visual representations to improve
spatial and temporal dependencies. Indeed, three trans-
formation techniques namely GAF, MTF, and RP are
employed to provide a richer feature representations,
allowing deep learning models to better capture pat-
terns and relationships within the ECG signals. To
further enhance feature extraction, a multimodal image
fusion (MIF) strategy is used to integrate these repre-
sentations into a unified dataset, ensuring a compre-
hensive input for classification.

- In model evaluation stage, deep learning models
such as CNN, LSTM, and recurrent neural network
(RNN) are fine-tuned using grid search and 5-fold
cross-validation to determine the best hyperparame-
ters. The optimal models are then validated their per-
formance in terms of heartbeat classification on the
testing data.

3.1 Preprocesing and heartbeat extraction

The descriptions of various techniques processed for
the extraction of heartbeats are as follows:

3.1.1 Preprocessing: A comprehensive denoising
method for ECG signals, which includes two advanced
filtering techniques such as band-pass filtering and
wavelet transform, is adopted in this work [11]. These
techniques are carefully selected to target specific types
of noise while maintaining vital ECG features, which
results in an improvement of the subsequent analysis
performance. Initially, band-pass filtering is applied
to eliminate both low-frequency baseline wander
and high-frequency noise within a frequency range
of [0.5-40] Hz. Then, the Wavelet transform is applied
to further refine the signal quality, which generates the
cleaned ECG signals for further implementation of the
Min-Max normalization to scale the ECG signals to a
range of [0-1].

3.1.2 Heartbeat extraction: The Pan-Tompkins algo-
rithm has been used in many studies to detect QRS.
However, it is not effective in handling noisy or low-
quality ECG signals. As demonstrated in [12], the
performance of the Pan-Tompkins algorithm signifi-
cantly degrades under such conditions. In contrast, X-
wave QRS detection (XQRS) is suitable for the ECG
signals including different challenges such as noise,
baseline wander, and QRS morphologies, which makes
it become a highly reliable tool for R-peak detection
in various datasets and scenarios. Therefore, in this
research, we use XQRS method to detect the positions
of the R-peaks in ECG signals [13]. Indeed, the R-peak,
which represents the highest point in a QRS complex of
an ECG waveform, corresponds to the depolarization of
the ventricles. Different techniques of signal processing
and mathematical methods are employed for the XQRS
to discern key features of the QRS complex, such as
amplitude, duration, and shape.

Heartbeats are then extracted by a sliding window
with a dimension of 360 samples using the above
identified R-peaks [14]. The rational behind the use of
the above window is that its size corresponds to a 1-
second window at a sampling rate of 360 Hz, which
closely approximates the average duration of a single
heartbeat. Firstly, the ECG signal is divided into mul-
tiple segments, in which each segment has an R-peak
as a center to capture the entire vital features of the
heartbeats. Then, a window size of 360 samples around
an R-peak from P-179 to P+180 is applied to extract
heartbeats, which minimizes the risk of incomplete
waveform coverage and helps the model learn the full
heart rate morphology. As a result, critical regions for
the identification of the cardiac arrhythmias, including
the QRS complexes, P-waves, and T-waves are definitely
included in this window size. Here, we select a con-
ventional 360-sliding window due to its effectiveness
in terms of heartbeat extraction and improvement of
the final arrhythmia detection performance. Besides, we
adopt the synthetic minority oversampling technique
(SMOTE) to generate additional samples to suppress
imbalanced data problem. This technique addresses
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class imbalance by the generation of synthetic samples
for minority classes which results in a more balanced
distribution of the outcomes. The synthetic samples are
produced by interpolating between existing minority
class instances. A minority class instance is selected
with its nearest neighbors, which creates the synthetic
samples along the line segments connecting the in-
stance to its neighbors. Consequently, the minority
class representation is significantly increased without
merely duplicating existing samples, which leads to
mitigation of class imbalance and improvement of the
model performance.

3.2 Transformation

We employ three different transformation methods
to convert raw ECG signals into images: GAF, RP,
and MTF to improve the quality of the transformed
images. Then, the MIF technique is implemented for
the combination of the above transformation outputs
to generate informative heartbeat-based images, which
preserve both statistical and temporal features. The
combined images are further fed into the deep learning
models to estimate the performance of those feature
images and intelligent algorithms.

1) GAF Transformation: The heartbeats are encoded
to the angular coordinate system by the GAF.
Firstly, the heartbeats are normalized from 0 to 1,
followed by mapping them to the angular trans-
formation in which the time and amplitude val-
ues define the radial and angular components,
respectively. The GAF ensures the maintenance of
the spatial relationships among heartbeat samples
and preserves the temporal dependencies in the
heartbeat, which allow to better visualization of
the heartbeat patterns [15].

2) RP Transformation: This method converts the heart-
beats into images by capturing their recurrence
behavior over time. Due to non-stationary char-
acteristic of the heartbeats, the RP improves sig-
nificantly the visualization of how similar heart-
beat patterns repeat at different time intervals.
Each point in an RP image represents the similar-
ity between two time instances in the heartbeat,
which identify periodic structures and anoma-
lies. The RP transformation is particularly useful
for arrhythmia detection and other irregularities
in the heartbeat patterns due to its ability of
emphasis on the repetitive features within the
heartbeats [16].

3) MTF Transformation: First-order Markov chains
based probabilistic approach, which includes par-
tition of a heartbeat into quantile-based bins
and construction of a weighted adjacency ma-
trix representing transition probabilities between
different signal states, is employed to encode
the heartbeats. Consequently, Markov transition
field matrix captures spatial dependencies of a
heartbeat while preserving the temporal dynam-
ics. Moreover, the transition probabilities across
the spatial domain is extended by the MTF to

maintain the essential heartbeat characteristics for
the classification [16].

3.3 Model evaluation

There are three deep learning models namely
CNN [17], RNN [18], and LSTM [19] considered as the
intelligent algorithms for the classification of various
heartbeats. To improve the model performance, we
implement the gird search-based optimization method
to obtain the optimal hyperparameters of such models
and then validate the selected models as follows:

3.3.1 Model Optimization: It is clear that optimization
plays an important role of the model performance
improvement and overfitting avoidance [20, 21]. In-
deed, key parameters of the CNN model such as the
learning rate, batch size, optimizer, and number of
epochs are necessary to fine-tuned for the maximization
of the feature extraction efficiency. Furthermore, RNN
and LSTM, which are designed for sequential data
processing, require additional tuning for the number
of units, dropout rate, and sequence length to effec-
tively capture temporal dependencies in the heartbeats.
In this study, we apply systematic optimization pro-
cess including grid search and 5-fold cross-validation
procedure to address the optimal parameter of these
models on the training data. Consequently, the optimal
models, which are able to learn robust representations
of the heartbeat waveforms, result in better accurate
arrhythmia detection.

Here, we select different range of values for the
optimization of model parameters and structures. There
are optimizers of [Adam, SGD, RMSprop], batch sizes
of [50, 75, 100], epochs of [50, 60, 70, 80, 90, 100],
learning rate of [0.0001, 0.0002, 0.0003, 0.0004, 0.0005].
Moreover, we define 5 blocks including a convolutional
layer, a ReLU, and a Maxpooling layer. Consequently, 5
CNN structures, which consist of the number of blocks
ranging from 1 to 5, is considered for the identification
of the optimal CNN model by the grid search method.
Similarly, we investigate 5 structures of LSTM models
and 5 RNN structures in which each model structure
contains a number of LSTM or Recurrent layer ranging
from 1 to 5 for the selection of the optimal LSTM
and RNN models. A total of 15 structures with 270
combinations of parameter values result in 4050 models
of CNN, LSTM, and RNN, which are then put into the
grid search algorithm.

3.3.2 Model Validation: The validation-based statistic
maner is applied for estimation of the optimal deep
learning models on the testing data, which make the
proposed algorithm become reliable application in the
practical environment. Here, the testing heartbeat data
is partitioned into five subsets, in which four sub-
sets are used for training and remaining subset is
for testing in each iteration. This process is repeated
five times so that all individual subsets serves as the
testing subsets. Besides, the mean performance met-
rics are then computed for the comparison with the
existing methods.
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4 Experiment Results

4.1 Performance measurement
We use accuracy, recall, precision, and F1-score for

model performance estimation in this work. Accuracy
measures the proportion of heartbeats identified cor-
rectly. Recall represents the proportion of heartbeats
that are identified correctly while precision shows the
fraction of the model’s heartbeat classifications that
are correctly addressed. The performance metrics are
given as follows for individual types of heartbeats. The
final performance is then computed as the mean of all
heartbeat types:

Accuracy =
TP + TN

TP + FP + TN + FN
, (1)

Recall =
TP

TP + FN
, (2)

Precision =
TP

FP + TP
, (3)

F1_score =
2 ∗ Recall ∗ Precision

2 ∗ (Recall + Precision)
, (4)

where TP, FN, TN, and FP are true positive, false
negative, true negative, and false positive values.

4.2 Preprocessing and heartbeat extraction
4.2.1 Preprocessing: Figure 2 show an example of the

preprocessed ECG signals, known as the outputs of
different preprocessed techniques in subfigures such
as raw ECG data in subfigure a), output signal of the
band-pass filter in subfigure b), reconstructed signal
by the wavelet transform in subfigure c), and the nor-
malized signal in subfigure d). Obviously, the signals
for the extraction of high-quality heartbeats are signifi-
cantly improved by the above preprocessed techniques.

4.2.2 Heartbeat segmentation: The total number of
heartbeats extracted from the 48 records is as follows:
72.471 for Normal (N), 2.223 for Supraventricular (S),
5.788 for Ventricular (V), 641 for Fusion (F), and 6.431
for Unknown (Q), respectively. SMOTE is then ap-
plied to address imbalanced data, which results in N
of 72.471, S of 30.000, V of 20.000, F of 20.000, and Q
of 10.000. The dataset of five heartbeat types is then
separated into training data of 80% and testing data
of 20% for further steps.

4.3 Transformation
The MIF generates the images which consist of

three orthogonal channels corresponding to GAF, RP,
and MTF images used as the input of various deep
learning algorithms. Clearly, three-channel image is a
composite representation, which includes the grayscale
images converted by three transformation techniques
using the heartbeats processed by different method
such as wavelet transform and band-pass filtering.
Table I shows the transformed images of different
heartbeat types.

4.4 Model evaluation

4.4.1 Model optimization: Table II and Table III present
the optimal structures and parameters of the deep
learning models, which are then validated their per-
formance on the testing data using 5-fold cross
validation procedure.

4.4.2 Model validation: The mean performance com-
parison of different deep learning models such as
LSTM, RNN, and CNN is given in Table IV. The highest
average performance is obtained by the CNN model
with an accuracy of 99.62%, precision of 99.41%, recall
of 99.52%, and F1-score of 99.64%, which is selected as
the proposed algorithm for the heartbeat detection.

5 Discussions

A combination of preprocessing techniques including
band-pass filtering, wavelet transform, and normal-
ization are used in this work. These techniques are
carefully selected to target specific types of noise while
maintaining vital ECG features, which results in the
improvement of the subsequent analysis performance.
Clearly, slow drifts and high-frequency artifacts, which
distort important signal components, are efficiently
removed to obtain the clean ECG signal without un-
wanted noise. Indeed, Figure 2b shows the output
signal of a band-pass filter with a cut-off frequency
of [0.5-40] Hz, which significantly reduces unwanted
frequency components, although some residual noise
remains. The filtered signals are further decomposed
into multiple frequency bands by the wavelet transform
to reduces remaining noise while preserving essential
features such as QRS complexes, P waves, and T waves.
Clearly, the wavelet approach is especially effective
in removing non-stationary noise that may not have
been fully addressed by the band-pass filter. Figure 2c
proves the effectiveness of the wavelet transform for
the signal denoising. Here, the filtered signal is en-
hanced by smoothing out residual noises while preserv-
ing essential features. The normalization is mandatory
procedure to standardize the data and improve the
performance of different deep learning models. It is
obvious that we we are able to minimize the influence
of varying amplitudes and enhance the model’s ability
to identify patterns and make accurate predictions by
the use of normalization process. Consequently, This
the ECG data is uniformly scaled and ready for further
analysis, classification tasks.

There are three transformation techniques employed
in this work to improve the spatial and temporal char-
acteristics of the heartbeats, which make them better
to use as the input of deep learning models. Moreover,
each method preserves distinct statistical properties of
the ECG data, contributing to a more comprehensive
feature representation and lossless conversion. Then,
MIF is adopted to combine three gray images gener-
ated by the above transformation methods to form a
three-channel image used as three orthogonal channels,
similar to the three colors in the RGB (red, green, and
blue) image space. However, unlike conventional RGB
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(a) Raw ECG signal

(b) Band-pass filtering signal

(c) Wavelet transform signal

(d) Normalized signal

Figure 2. Examples of preprocessed ECG signal. (a) Raw ECG signal; (b) Band-pass filtering signal; (c) Wavelet transform signal;
(d) Normalized signal.

image conversion, MIF algorithm generates all three
grayscale images directly from the heartbeat data using
different statistical methods. As a result, the three-
channel images capture better statistical dynamics of
the heartbeats, which provide more comprehensive
data representations. As a result, three-channel images
correspond to different heartbeats, which are utilized
as the input of various deep learning models for the
arrhythmia diagnosis.

We implement CNN, RNN, and LSTM models for
comparison with existing methods and proposal of the
optimal heartbeat detection algorithms. CNN is suit-
able for automatically extracting spatial features, par-
ticularly from key waveform components namel QRS

complexes, P-waves, and T-waves. In addition, good
ability of the CNN to recognize intricate spatial rela-
tionships improves significantly arrhythmia detection.
Another model known as RNN is well-suited for cap-
turing temporal dependencies in ECG waveforms, en-
abling a deeper understanding of sequential heartbeat
patterns. LSTMs, which is designed to retain long-
term dependencies, further enhance temporal model-
ing in heartbeat analysis. The memory mechanisms of
LSTM allow for better handling of extended sequences,
improving classification accuracy and reliability. It is
noteworthy that hyper-parameters such as batch size,
epochs, learning rate, and optimizer are critical to
ensure robust heartbeat interpretation and improve the
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Table I
Transformed Images of Five Heartbeat Types

Categories N F V F Q

Heartbeats

GAF Images

RP Images

MTF Images

Triple Chanel Image

Table II
The Structure of Deep Learning Models

Model Layer Number
CNN Convolutional layer 3

ReLU 3
Max pooling 3

Dropout 1
Fully connected 2

Softmax 1
LSTM LSTM layer 3

Dropout 1
Fully connected 2

Softmax 1
RNN Recurrent layer 3

Dropout 1
Fully connected 2

Softmax 1

final performance of the proposed algorithm. Hence,
the grid search combined with 5-fold cross validation

Table III
The Optimal Parameters of the Selected Models

Model Parameter Value
CNN Optimizer Adam

Batch Size 100
Epochs 50

Learning rate 0.0001
LSTM Optimizer Adam

Batch size 100
Epochs 70

Learning rate 0.0003
RNN Optimizer Adam

Batch size 75
Epochs 60

Learning rate 0.0002

procedure is implemented to address the optimal set of
hyper-parameters for these deep learning models.

Table IV shows the average performance of three
deep learning models on the testing data. Obviously,
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Table IV
Performance of the Deep Learning Models on the Testing

Dataset

Model Accuracy
(%)

Precision
(%)

Recall
(%)

F1-Score
(%)

LSTM 97.32 97.39 98.39 97.32
RNN 98.43 98.42 98.36 98.44
CNN 99.62 99.41 99.52 99.64

Table V
Mean Accuracy Comparison of Proposed Algorithm with

Existing Works

Model Mean
accuracy

Mean
precision

Mean
recall

Mean
F1-score

[22] 97.78 71.3 60.98 32.87
[23] 98.35 98.41 98.30 98.36
Our 99.62 99.41 99.52 99.64

all three models produce relatively high performance
in terms of heartbeat recognition with mean accuracy
over 97%. Among these models, the highest perfor-
mance is shown by the CNN model with average ac-
curacy of 99.62%, precision of 99.41%, recall of 99.52%,
and F1-score of 99.64%, which confirms the most ef-
fective approach of CNN, with respect to feature ex-
traction and classification of the heartbeats. Hence,
we select the proposed algorithm using CNN and a
combination of transformed images using heartbeats
extracted from the ECG signals.

Table V compares the average accuracy of the pro-
posed method to that of the existing studies. Specifi-
cally, the proposed method achieves a remarkable av-
erage accuracy of 99.62%, which outperforms the re-
ported accuracies of 97.78% and 98.35% in [22] and [23].
Therefore, the proposed algorithm is potential for prac-
tical use in the early detection and management of
cardiovascular diseases.

6 Conclusions

CVD is one of the most dangerous heart diseases,
which is the main cause of global mortality. Raid and
correct diagnosis of CVDs play a vital role in healthcare
systems, which provides essentially clinical decision-
making for the experts and technicians in the prac-
tical hospital environments. Hence, the performance
improvement of the arrhythmia detection is paid in-
tensive attention from the medical researchers due to
high classification performance resulting in avoidance
of numerously unexpected deaths.

In this work, we proposed an effective algorithm,
which is potential application for the clinic environ-
ments using deep learning. The proposed algorithm
was designed with a CNN model and combined images
using MIF method. Transformation techniques such
as MTF, GAF, and RP are employed to convert the
heartbeats into the grayscale images, which are then
combined as three-channel images for the input of
CNN model. Obviously, distinct statistical properties

of heartbeats are captured significantly by three trans-
formation techniques, which result in better feature
representation and lossless conversion of the three-
channel images constructed by MIF method. Moreover,
essential characteristics of QRS complexes, T, and P
waves are also maintained successfully by the combina-
tion of different preprocessing techniques namely band-
pass filtering and wavelet transform. The validated
classification performance with Ac of 99.62%, precision
of 99.41%, recall of 99.52%, and F1-score of 99.64%
on the testing data implies the effectiveness of our
proposed algorithm to apply for the healthcare system,
which provides essential support and reliable solution
for the clinic experts with respect to early detection,
proper treatment, and management of cardiovascular
diseases in practical hospital environments.

The limitation of this work is the implementation of
transformation technique to convert the ECG signals
into multiple image formats, which increases the com-
putational complexity. Moreover, the analysis is limited
to a single dataset which raises concerns about the
generalization of the results to other clinical scenarios.
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