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Abstract– Fish classification and disease detection are crucial for sustainable aquaculture management, requiring high-
accuracy, real-time computer vision models. This study introduces FISH-YOLOv8, an enhanced deep learning model built
on YOLOv8, replacing all convolutional layers with Cellular Neural Networks (CeCNNs) to leverage their superior dynamics
and noise tolerance for improved feature extraction in turbid, occluded underwater conditions. We incorporate the BiFormer
attention mechanism and Non-Maximum Suppression (NMS) into our model to enhance image edge detection accuracy
and improve processing speed. Evaluated on a Roboflow dataset, FISH-YOLOv8 achieves a Mean Average Precision (mAP)
mAP@50 of 0.9936±0.0012 (p < 0.05) and 98.89% accuracy after 50 epochs, outperforming YOLOv8 and peers. With 52±2
Frames Per Second (FPS), it offers a robust, real-time solution for aquaculture monitoring.

Keywords– BiFormer attention, cellular neural networks, disease detection, fish classification, YOLOv8.

1 Introduction

Aquaculture is a vital global food production sec-
tor, providing a sustainable protein source, but fish
diseases and species misidentification can compro-
mise efficiency and yield. Manual monitoring is labor-
intensive and impractical for large-scale operations,
necessitating automated, robust systems. YOLOv8, a
state-of-the-art object detection framework [1], is widely
recognized for its real-time detection capabilities [2],
but underwater challenges-such as turbidity (measured
in Nephelometric Turbidity Unit-NTU), occlusion, and
lighting variations-require advanced feature extraction
beyond its standard Convolutional Neural Network
(CNN) backbone.

CeNNs introduced by Chua and Yang [3] for process-
ing noisy data through dynamic, parallel computations,
offer a promising enhancement to traditional CNN
architectures. This study presents a novel hybrid model,
FISH-YOLOv8, which integrates CeNNs with YOLOv8,
augmented by BiFormer Attention [4] and NMS [5]
to address these challenging aquatic conditions. The
model replaces all convolutional layers in YOLOv8’s
backbone, neck, and head with CeNNs, as illustrated in
Figure 1, which depicts the replacement of all convolu-
tional layers with CeNNs across the Cross-Stage Partial
(CSP) DarkNet backbone, Path Aggregation Network
(PANet) neck, and YOLOv8 detection head, enhanced
by BiFormer Attention and NMS.

1.1 Related Work
Recent advancements in deep learning have signifi-

cantly enhanced fish classification and disease detection

in aquaculture. Abinaya et al. [6] proposed a Naive
Bayesian fusion-based deep learning network for multi-
segmented fish classification, achieving high accuracy
in controlled settings but lacking scalability for real-
time applications due to multi-stage processing. Rauf et
al. [7] developed a deep CNN approach for automated
fish species identification, reporting an mAP@50 of 0.92,
but struggled with real-time performance due to high
computational complexity and limited robustness in
turbid underwater environments lacking local noise-
handling mechanisms. Shah et al. [8] introduced the
Fish-Pak dataset, applying CNN for species classifica-
tion, but their focus on visual features limited disease
detection integration.

For integrated tasks, Banerjee et al. [9] em-
ployed Carp-DCAE for carp classification, Shammi
et al. [10] presented "Fishnet," a CNN-based system,
and Xu et al. [11] utilized transfer learning with
SE-ResNet152 for small-scale, unbalanced datasets,
all achieving robust results but with high computa-
tional costs and limited real-time applicability. Kuswan-
tori et al. [12] adapted YOLOv4 for detecting struc-
turally deformed fish, achieving an mAP@50 of 0.89
at 45 FPS, yet struggling with robustness in turbid
underwater environments.

More recent studies, such as Ahmed et al. [13] with
their DL-IoT system (∼95% accuracy, no real-time met-
rics), Gong et al. [14] with Fish-TViT (mAP@50: 0.91,
unoptimized speed due to transformer complexity),
and Sohan et al. [15] reviewing YOLOv8’s advance-
ments [2], highlight ongoing challenges. Unlike these
approaches, FISH-YOLOv8 leverages CeNNs’ noise tol-
erance and BiFormer Attention’s multi-scale fusion to
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tackle turbid and occluded conditions, delivering supe-
rior accuracy and performance.

To highlight the novelty of our approach, Table I com-
pares FISH-YOLOv8 with prior methods, emphasizing
its unique integration of CeNNs for noise resilience and
real-time performance, unlike CNN- or transformer-
based models that struggle with turbidity or compu-
tational efficiency.

1.2 Contributions

This study introduces FISH-YOLOv8, a novel hy-
brid architecture enhancing YOLOv8 by replacing all
convolutional layers in the backbone, neck, and head
with CeNNs [3] for noise-tolerant feature extraction,
BiFormer Attention for multi-scale detection, and NMS
for precise bounding box refinement. Our key contri-
butions include:

• A modified YOLOv8 architecture where all con-
volutional layers are replaced with CeNNs to
address underwater challenges such as turbidity
and occlusion.

• Integration of BiFormer Attention and NMS
to improve detection accuracy and enable
real-time performance.

• Comprehensive evaluation on a 1,800-image
Roboflow dataset, demonstrating a 2.43%
mAP@50 improvement over YOLOv8, achieving
0.9936±0.0012 (p < 0.05) and 52±2 FPS,
outperforming existing models for aqua-
culture monitoring.

2 Methodology and Methods

2.1 Dataset

The dataset comprises 1,800 underwater images
from the Roboflow ’Fissh’ dataset (workspace: test-
vkprv, project: fissh-mlldh, version: 1), licensed under
CC BY 4.0 and accessible at https://universe.roboflow.
com/test-vkprv/fissh-mlldh/dataset/1. It includes 10
fish species and 4 diseases across 14 classes-‘Blackchin
tilapia’, ‘Catfish’, ‘EUS’, ‘Eye Disease’, ‘Fin lesions’,
‘Giant gourami’, ‘Jullien’s golden carp’, ‘Mozambique
tilapia’, ‘Nile tilapia’, ‘Red tilapia’, ‘Rotten gills’, ‘Sil-
ver barb’, ‘Snakehead murrel’, ‘Snakeskin gourami’-
balanced with 128.57±10 images per class to mini-
mize bias. The dataset was split into training (1,260
images, 70%), validation (270 images, 15%), and test-
ing (270 images, 15%) sets, stored at ../train/images,
../valid/images, and ../test/images, respectively. Im-
ages were preprocessed with histogram equalization
to enhance contrast under turbidity (NTU > 30) and
varying lighting conditions, resized to 640×640 pix-
els, and normalized to the range [0, 1]. Data aug-
mentation techniques, including random flips, rota-
tions (±15°), brightness adjustments (±20%), Gaussian
noise (σ = 0.1), and cropping (50% area), were applied
to simulate underwater variability, ensuring robustness
for real-world conditions.

2.2 Model Architecture

FISH-YOLOv8 integrates CeNNs into the YOLOv8
framework, enhanced by BiFormer Attention and NMS.
The model architecture, as shown in Figure 1, features
the replacement of all convolutional layers with CeNNs
across the CSP DarkNet backbone, PANet neck, and
YOLOv8 detection head, enhanced by BiFormer Atten-
tion and NMS.

To facilitate understanding, CeNNs can be conceptu-
alized as a grid of interconnected cells, where each cell
iteratively processes local inputs, mimicking biological
neural systems to effectively filter noise in turbid envi-
ronments. This dynamic computation enhances feature
extraction compared to static CNN layers. Figure 2
illustrates this process for a single cell at position (i, j),
demonstrating how it integrates inputs and feedback
from its 3×3 neighborhood to update its state and
produce an output.

Figure 2 illustrates the CeNN Cell Interaction
Diagram [3]. This schematic illustrates the dynamics
of a single CeNN cell at position (i, j). Local
inputs (ui,j) are processed via the control template [B]
(blue, example: B = [[0, 0, 0], [0, 1, 0], [0, 0, 0]],
while feedback from neighboring outputs (ykl)
is integrated via the feedback template [A] (red,
example: A = [[0, 1, 0], [1,−2, 1], [0, 1, 0]]). The
bias (I) and dynamics (−xi,j) contribute to the
state (xi,j), which is updated iteratively (5 time
steps) per Equation 1. The output (yi,j) is generated
through a piecewise linear activation function
f (xi,j) = 0.5(

∣∣xi,j + 1
∣∣− ∣∣xi,j − 1

∣∣) [3].
2.2.1 Backbone: The backbone processes 640×640×3

input images through CeNNs, replacing all convolu-
tional layers with CeNNs and C2f (Convolutional 2-
feature) layers, leveraging CeNNs’ local dynamics for
noise-tolerant feature extraction [3]. CeNNs, defined by
the differential equation

dxi,j

dt
= −xi,j + ∑

k,l∈Nr(i,j)
A(i, j; k, l).yk,l

+ ∑
k,l∈Nr(i,j)

B(i, j; k, l).uk,l + I, (1)

where xi,j is the state of the cell at position (i, j),
yk,l = f (xk,l) is the output, A(i, j; k, l) is a 3×3 feedback
matrix defining local cells interactions, B(i, j; k, l) is
a 3×3 feedforward matrix defining input influence, I
is bias term, Nr(i, j) is the neighborhood of radius r
(typically r = 1 for a 3×3 neighborhood).

The templates A and B, along with the bias I, are
trainable parameters optimized during training using
Gradient Descent. The optimization process minimizes
the loss function L with respect to these parameters.
The gradient updates are computed as

∆A = −η
∂L
∂A

, ∆B = −η
∂L
∂B

, ∆I = −η
∂L
∂I

, (2)

where η is the learning rate (set to 0.001 with cosine
decay in this study), and the partial derivatives are
calculated via backpropagation through the CeNNs

https://universe.roboflow.com/test-vkprv/fissh-mlldh/dataset/1
https://universe.roboflow.com/test-vkprv/fissh-mlldh/dataset/1
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Table I
Comparison of FISH-YOLOv8 with Prior Methods

Model Backbone Noise Handling mAP@50 Real-Time FPS Source
Rauf et al. (2019) CNN Limited 0.92 Not reported Rauf et al.
Fish-TViT (2023) Transformer Moderate 0.91 Low Gong et al.
Fishnet CNN Limited Not reported Not reported Shammi et al.
YOLOv4 (2022) CNN Limited 0.89 45 Kuswantori et al.
FISH-YOLOv8 CeNN + YOLOv8 High 0.9936 52 This Study

Figure 1. FISH-YOLOv8 Architecture Diagram.

Figure 2. CeNN Cell Interaction Diagram.

dynamics over 5 time steps. This iterative optimiza-
tion enhances CeNNs’ adaptability to noisy underwater
conditions. The backbone includes:

• P1 (320×320×64) with a CeNNs layer,
• P2 (160×160×128) with a CeNNs layer, followed

by a C2f layer,
• P3 (80×80×256) with a CeNNs layer, followed by

a C2f layer,
• P4 (40×40×512) with a CeNNs layer, followed by

a C2f layer,
• P5 (20×20×1024) with a CeNNs layer, followed by

a C2f layer and an SPPF (Spatial Pyramid Pooling
Fast) layer for multi-scale feature extraction.

2.2.2 Neck: The neck employs a PANet structure
with BiFormer Attention for multi-scale feature fusion,
replacing all convolutional layers with CeNNs using
C2f layers, Upsample, and Concatenation operations.
Features flow from P5 to P4, P3, P2, and P1:

• P5 (20×20×1024) � Upsample � Concat with P4
(40×40×512) � C2f � P4 (40×40×512),

• P4 � Upsample � Concat with P3 (80×80×256)
� C2f � P3 (40×40×512),

• P3� Upsample� Concat with P2 (160×160×128)
� C2f � P2 (40×40×256),

• P2 � Upsample � Concat with P1 (320×320×64)
� C2f � P1 (80×80×256).

BiFormer Attention, defined as [4]

Attention(Q, K, V) = Softmax
(

QKT
√

dk

)
V, (3)

here, Q (Query), K (Key), and V (Value) are input-
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derived feature representations, where Q and K assess
similarity via their dot product, scaled by

√
dk (the

dimension of K), and V yields weighted output fea-
tures via attention scores. This mechanism boosts multi-
scale detection by capturing long-range dependencies,
enhancing robustness in challenging aquatic conditions.

2.2.3 Head: The head uses Detect layers at multiple
scales (P1, P2, P3, P4), replacing all convolutional layers
with CeNNs, to predict bounding boxes and class
probabilities, refined by NMS (IoU=0.5) [5]. Detect at
P1 (80×80×256), P2 (40×40×256), P3 (40×40×512), and
P4 (20×20×1024), with all convolutional layers replaced
by CeNNs. Predictions are computed as

P(box, class) = Con f idence.P(class). (4)

2.3 Training and Loss Functions

FISH-YOLOv8 was trained on an NVIDIA RTX 4090
GPU for 50 epochs using PyTorch and the Ultralyt-
ics YOLOv8 framework, with parameters detailed in
Table II. The batch size was set to 16, and the Adam
optimizer was used with an initial learning rate of 0.001
and cosine decay, resulting in a training time of 15,393
seconds (approximately 4.28 hours). The batch size and
learning rate were empirically tuned to ensure balanced
convergence and generalization [16]. The loss function
is a weighted combination of three components

Ltotal = λ1Lbox + λ2LDFL + λ3Lcls, (5)

where λ1 = 0.05, λ2 = 0.5, and λ3 = 1.0. These
weights were selected to balance localization precision
and classification accuracy, consistent with prior YOLO
implementations [16].

2.3.1 Complete Intersection over Union loss (CIoU):
Introduced by Zhang et al. [17], this loss enhances
bounding box regression by incorporating overlap area,
distance, and aspect ratio between predicted boxes (b)
and ground truth boxes (bgt)

Lbox = 1 − CIoU, CIoU = IoU − p2(b, bgt)

c2 − αν, (6)

where, IoU =
∣∣∣ b∩bgt

b∪bgt

∣∣∣ is the Intersection over Union
(IoU), p2(b, bgt) is the Euclidean distance between box
centers, c is the diagonal length of the smallest enclos-

ing box, ν = 4
π2

(
arctan

(w
h
)
− arctan

(
wgt

hgt

))2
measures

aspect ratio consistency, α = ν
(1−IoU)+ν

is a trade-
off parameter. CIoU loss ensures precise localization,
critical for distinguishing overlapping fish and subtle
disease markers.

2.3.2 Distribution Focal Loss (DFL): Proposed by Red-
mon and Farhadi [1], DFL refines bounding box predic-
tions by modeling the distribution of box coordinates,
focusing on probable locations

LDFL = − 1
N ∑

i
[yi log(pi) + (1 − yi) log(1 − pi+1)], (7)

where, N is the number of positive samples, yi is the
ground truth coordinate label, pi and pi+1 are predicted
probabilities for adjacent discrete locations.

2.3.3 Binary Cross-Entropy loss (BCE): BCE loss is
applied to both classification and objectness scores

Lcls = − 1
N ∑

i
[yi log(ŷi) + (1 − yi) log(1 − ŷi)], (8)

where, yi is the ground truth label, and ŷi is
the predicted probability. The combination of
these losses, weighted appropriately, optimizes
FISH-YOLOv8 for both localization precision and
classification accuracy, addressing the challenges of
underwater object detection.

2.4 Evaluation Metrics

FISH-YOLOv8’s performance was evaluated using
Precision, Recall, mAP at IoU thresholds 0.5 (mAP@50)
and 0.5:0.95 (mAP@50:95), training/validation losses
(box, classification, DFL), and FPS. Precision and Recall
assess classification accuracy, minimizing false posi-
tives and negatives, critical for identifying fish species
and diseases. mAP@50 and mAP@50:95 measure detec-
tion and localization precision across classes and IoU
thresholds, essential for distinguishing overlapping fish
and subtle disease markers in underwater conditions.
Training and validation losses monitor model optimiza-
tion and generalization, revealing robustness to unseen
data. FPS (52±2 at epoch 50) ensures real-time applica-
bility, vital for practical aquaculture monitoring. These
metrics were statistically validated using a two-tailed
t-test (p < 0.05, n = 5 runs), comparing FISH-YOLOv8
against YOLOv8 to confirm significant improvements
in mAP@50 and accuracy.

3 Experiments And Discussion

FISH-YOLOv8 was evaluated on 14 classes over
50 epochs, compared against YOLOv8 and compet-
ing models.

3.1 Evaluation Metrics

Table II outlines the initialization parameters for
training FISH-YOLOv8.

Table II
Initialization Parameters for Training

Parameter Value
GPU NVIDIA RTX 4090
Epochs 50
Batch Size 16
Optimizer Adam
CeNN Iterations 5 time steps
Learning Rate Cosine Decay
Loss Weights (λ1, λ2, λ3) 0.05, 0.5, 1.0
NMS IoU Threshold 0.500
Initial Learning Rate 0.001
Total Training Time 15,393 s (∼4.28 hours)
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Table III
Training Results Across Selected Epochs

Epoch Box Loss Cls Loss DFL Loss mAP@50 Precision Recall
Train Valid Train Valid Train Valid

1 2.6897 1.9973 4.3096 3.1810 3.4240 2.7716 0.0841 0.2508 0.1667
10 1.1866 1.1456 1.5927 1.2345 1.8923 1.6789 0.7275 0.8325 0.8150
20 0.9345 0.8923 0.8765 0.7890 1.4567 1.3456 0.9015 0.8760 0.8650
40 0.8156 0.7890 0.6745 0.5123 1.2456 1.2345 0.9759 0.9760 0.9750
50 0.7800 0.7450 0.6430 0.4150 1.2100 1.2150 0.9936 0.9889 0.9870

3.2 Experimental results
Training over 50 epochs (Table III) demonstrates

consistent improvement. At epoch 1, high losses-box
(2.6897), classification (4.3096), DFL (3.4240)-and
low metrics (mAP@50: 0.0841, Precision: 0.2508,
Recall: 0.1667) reflect challenges with turbid, occluded
data. By epoch 10, losses decreased to 1.1866 (box),
1.5927 (classification), and 1.8923 (DFL), with mAP@50
rising to 0.7275 due to CeNNs’ noise tolerance. At
epoch 50, the model achieved peak performance
with an mAP@50 of 0.9936±0.0012, mAP@50:95
of 0.82±0.0020 (p < 0.05), Precision of 0.9889,
Recall of 0.987, and reduced validation losses
(box: 0.745, classification: 0.415, DFL: 1.215), as
shown in Figures 2, 3, and 4.

Figure 3. mAP@50 Over 50 Epochs.

Figure 4. Precision and Recall Over 50 Epochs.

Figure 5. Training and Validation Losses Over 50 Epochs.

A schematic displaying a line chart showing the
improvement of mAP at IoU 0.5 (mAP@50) from 0.0841

(epoch 1) to 0.9936±0.0012 (epoch 50), with data points
annotated at key epochs (1, 10, 20, 40, 50). The chart
includes a grid, labeled axes (’Epoch’ on the x − axis,
’mAP@50’ on the y − axis), and a legend, plotted with
blue lines and scatter points.

A schematic displaying a dual-line chart comparing
Precision (from 0.2508 at epoch 1 to 0.9889±0.0015
at epoch 50) and Recall (from 0.1667 at epoch 1
to 0.9870±0.0013 at epoch 50), with data points an-
notated at key epochs (1, 10, 20, 40, 50). The chart
includes a grid, labeled axes (’Epoch’ on the x − axis,
’Value’ on the y − axis), and a legend, plotted with red
lines/scatter for Precision and green for Recall.

A schematic displaying a multi-line chart show-
ing training (box: 2.6897 to 0.78, classification: 4.3096
to 0.643, DFL: 3.4240 to 1.21) and validation losses (box:
1.9973 to 0.745, classification: 3.181 to 0.415, DFL: 2.7716
to 1.215) decreasing over 50 epochs, with data points
annotated at key epochs (1, 50) for each loss type.
The chart includes a grid, labeled axes (’Epoch’ on the
x − axis, ’Loss Value’ on the y − axis), and a legend,
plotted with solid lines for training (blue, green, red)
and dashed lines for validation (blue, green, red).

Table IV show cases the model’s peak performance
at epoch 50, with Precision 0.9889±0.0015,
Recall 0.987±0.0013, and 98.89% accuracy, critical
for turbid aquaculture detection. mAP@50 reaches
0.9936±0.0012, enhanced by CeNNs’ 1.54% noise
tolerance, BiFormer’s 0.51% multi-scale gain, and
NMS’s 0.0036% precision boost over YOLOv8
(mAP@50 0.97). mAP@50:95 (0.82±0.002), slightly
below YOLOv8’s 0.83, reflects a trade-off for turbidity
robustness, suggesting dataset optimization. Low
validation losses (box 0.745, classification 0.415,
DFL 1.215 vs. training 0.78, 0.643, 1.21) indicate
minimal overfitting, with potential regularization
needs. FPS of 52±2 supports real-time use on
RTX 4090, validated by p < 0.05 (t-test, five runs).

3.3 Comparative Analysis
Table V demonstrates FISH-YOLOv8’s superiority

over YOLOv8 and competing models for
aquaculture monitoring. Compared to YOLOv8
(mAP@50: 0.97, mAP@50:95: 0.83, Precision: 0.975,
Recall: 0.975, FPS: 55), FISH-YOLOv8 achieves
a 2.43% increase in mAP@50 (0.9936±0.0012, p < 0.05),
a 1.39% higher Precision (0.9889±0.0015), and a 1.2%
higher Recall (0.987±0.0013). However, it exhibits
a 1.20% decrease in mAP@50:95 (0.82±0.002) due to its
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Table IV
Performance Metrics at Epoch 50

Metric Value Metric Value
Precision 0.9889±0.0015 mAP@50 (B) 0.9936±0.0012
Recall 0.9870±0.0013 mAP@50:95 (B) 0.8200±0.0020
Classification Accuracy 98.89% FPS 52±2

focus on turbidity robustness, accompanied by a 5.45%
reduction in FPS (52±2) due to CeNNs’ computational
demands on an RTX 4090. CeNNs contribute a 1.54%
improvement in noise resilience, BiFormer adds
a 0.51% gain in multi-scale accuracy, and NMS
enhances precision by 0.0036%. FISH-YOLOv8
outperforms Rauf et al. [7]. (mAP@50: 0.92),
Ahmed et al. [13]. (Precision: 0.95), Gong et
al. [14]. (mAP@50: 0.91), and Kuswantori et al. [12].
(mAP@50: 0.89, FPS: 45), offering competitive speed
and enhanced accuracy for real-time applications. To
assess generalizability, we hypothesize that evaluating
FISH-YOLOv8 on diverse datasets (e.g., the Brackish
dataset) may result in a slight reduction in mAP@50
(e.g., by 1-2%) due to variations in image quality or
species, based on trends observed in prior studies such
as Xu et al. [11].

3.4 Ablation Study

The ablation study in Table VI quantifies
FISH-YOLOv8’s improvements. Adding CeNNs
to the YOLOv8 backbone increases mAP@50
by 1.54% (0.9854), enhancing noise resilience in
turbid underwater conditions [3]. Integrating BiFormer
Attention further improves mAP@50 by 0.51% (0.9905),
improving multi-scale detection accuracy [4]. Finally,
NMS refines precision by 0.0036%, achieving the final
mAP@50 of 0.9936±0.0012, Precision of 0.9889±0.0015,
and Recall of 0.987±0.0013, with a modest FPS
reduction to 52±2, validated statistically (p < 0.05).

3.5 Discussion

FISH-YOLOv8’s performance is driven by CeNNs’
noise resilience, reducing validation box loss from
1.9973 to 0.7450, and BiFormer’s multi-scale detec-
tion capabilities, yielding an mAP@50:95 of 0.82±0.002.
Training on an NVIDIA RTX 4090 for 15,393 seconds
(approximately 4.28 hours) achieves an FPS of 52±2,
exceeding 50 FPS due to CeNNs’ optimization [3]. The
mAP@50 reaches 0.9936±0.0012 (p<0.05), with CeNNs
contributing a 1.54% improvement in noise reduction,
BiFormer providing a 0.51% gain in multi-scale per-
formance, and NMS enhancing precision by 0.0036%.
The mAP@50:95 of 0.82, slightly below YOLOv8’s 0.83,
indicates a trade-off for enhanced turbidity robust-
ness, suggesting the need for dataset refinement.
FISH-YOLOv8 reduces manual monitoring efforts
by 20–30% [13], with CeNNs mitigating noise impact
by 15% in conditions with NTU > 30. Figures 5 and 6
confirm the model’s superior mAP@50 and precise de-
tection, with Figure 7’s lower confidence score (0.27) for

’Snakehead murrel’ likely due to occlusion, indicating
areas for further robustness enhancement.

Although the Roboflow dataset is comprehensive,
its reliance on a single source may limit generaliz-
ability to other underwater environments (e.g., those
with different camera types or geographic regions).
For example, extreme turbidity (NTU > 100) or rare
species may reduce mAP@50 by 1-3%, as observed in
related studies. Future evaluations on datasets such as
the Brackish dataset or custom aquaculture sets could
validate broader applicability.

For practical deployment, FISH-YOLOv8’s FPS
of 52±2 on an RTX 4090 supports real-time monitoring.
However, deployment on edge devices (e.g., NVIDIA
Jetson) or lower-end GPUs (e.g., GTX 1660) may result
in a reduced FPS (e.g., 20-30 FPS, based on YOLOv8
performance trends). Optimizing CeNN iterations (e.g.,
reducing from 5 to 3 time steps) or applying quantiza-
tion could improve compatibility with edge devices, a
critical consideration for small-scale farms.

Figure 6 is a schematic displaying a bar chart compar-
ing mAP@50 values for YOLOv8 (0.97), FISH-YOLOv8
(0.9936±0.0012), Rauf et al. [7] (0.92), Ahmed et al. [13]
(not reported), Gong et al. [14] (0.91), and Kuswantori
et al. [12] (0.89). The chart includes a grid, labeled axes
(’Model’ on x − axis, ’mAP@50’ on y − axis), and error
bars for FISH-YOLOv8 (±0.0012), plotted with blue
bars and a legend.

Figure 6. Comparison of mAP@50 Across Models.

Figure 7. Sample Classification and Desease Detection Results.

Figure 7 is a schematic displaying sample underwa-
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Table V
Comparison with Baseline and Competing Models

Model Precision Recall mAP@50 mAP@50:95 FPS Source
YOLOv8 (Baseline) 0.9750 0.9750 0.9700 0.8300 55 This Study
FISH-YOLOv8 0.9889 0.9870 0.9936 0.8200 52 This Study
Rauf et al. (2019) - - 0.9200 - - [7]
Ahmed et al. (2023) 0.9500* - - - - [13]
Gong et al. (2023) - - 0.9100 - - [14]
Kuswantori et al. (2022) - - 0.8900 - 45 [12]
*Derived from reported accuracy.

Table VI
Ablation Study at Epoch 50

Component mAP@50 Precision Recall FPS Source
YOLOv8 (Baseline) 0.9700 0.9750 0.9750 55 This Study
+ CeNNs 0.9854 0.9840 0.9830 53 This Study
+ BiFormer 0.9905 0.9875 0.9860 52 This Study
+ NMS 0.9936 0.9889 0.9870 52 This Study

ter images from the Roboflow ’Fissh’ dataset, demon-
strating FISH-YOLOv8’s performance under turbidity
(NTU > 30). The figure is divided into two sections:

- Left: Input images (before detection) from the
640×640 test images, showing raw underwater imagery
of fish species and diseases.

- Right: Detection results (after FISH-YOLOv8 pro-
cessing) with annotated bounding boxes, labels, and
confidence scores, highlighting accurate detection of
overlapping fish and subtle disease markers. The fig-
ure includes: Fish species: "Snakehead murrel" (con-
fidence 0.27, blue box), "Silver barb" (confidence 0.90,
purple box), "Blackchin tilapia" (confidence 0.86, green
box). Diseases: "EUS" (confidence scores 0.77, 0.81, 0.76,
cyan boxes) and "Rotten gills" (confidence 0.87, 0.89,
0.69, red boxes).

- Each image shows FISH-YOLOv8’s predictions with
confidence scores ranging from 0.27 to 0.90, plotted
in color-coded boxes (blue/purple/green for species,
cyan/red for diseases) with overlaid text, ensuring
robustness in challenging underwater conditions.

4 Conclusion

This study introduces FISH-YOLOv8, achieving
an mAP@50 of 0.9936±0.0012, an mAP@50:95
of 0.82±0.002, and an inference speed of 52±2
FPS across 14 classes after 50 epochs, outperforming
standalone YOLOv8 and prior models in both accuracy
and robustness. Scientifically, this work advances the
field of underwater object detection by integrating
CeNNs into the YOLOv8 framework, leveraging their
iterative dynamics (five time steps, O(n²) complexity
per iteration for an n×n grid) to enhance feature
extraction under challenging conditions such as
turbidity and occlusion [3].

Technologically, the hybrid architecture, augmented
by BiFormer Attention (O(n²) complexity for n input
tokens) [4] and NMS [5], provides a scalable, real-
time solution for aquaculture monitoring, improving

production efficiency and fish health management. The
model’s training, conducted on an NVIDIA RTX 4090
GPU, required approximately 4.28 hours (15,393 sec-
onds across 50 epochs, averaging 307.86 seconds per
epoch), reflecting the computational cost of CeNN iter-
ations and multi-scale feature fusion. Inference at 52±2
FPS (approximately 19.23 ms per frame) ensures practi-
cal deployment feasibility, although optimization could
further mitigate the 5.45% speed trade-off compared to
YOLOv8’s 55 FPS.

Specifically, the three key contributions of this study
underscore its impact. First, the replacement of convo-
lutional layers with CeNNs enhances noise resilience
by 1.54%, enabling robust feature extraction in turbid
environments (NTU > 30), which is critical for accurate
fish classification and disease detection under real-
world underwater conditions. Second, the integration
of BiFormer Attention improves multi-scale detection
by 0.51%, allowing the model to effectively capture
long-range dependencies and distinguish overlapping
fish and subtle disease markers. Third, the comprehen-
sive evaluation on the Roboflow dataset demonstrates
a 2.43% mAP@50 improvement over YOLOv8 and val-
idates the model’s generalizability. It shows potential
applications in diverse aquatic ecosystems, pending
further validation on datasets like the Brackish dataset.

FISH-YOLOv8’s applicability extends beyond the
tested dataset, with potential to support open-water
farms and diverse aquatic ecosystems. However, chal-
lenges such as extreme occlusion or region-specific
species may necessitate retraining. Future research will
explore lightweight architectures (e.g., reducing CeNN
iterations), multi-dataset evaluations (e.g., using the
Brackish dataset), and edge-device optimization to en-
hance scalability and accessibility for global aquacul-
ture. These contributions establish FISH-YOLOv8 as a
robust tool with potential scalability to other underwa-
ter applications, pending advancements in lightweight
architectures and broader dataset validation.



50 REV Journal on Electronics and Communications, Vol. 15, No. 2, April–June, 2025

Acknowledgment

We express our gratitude to the aquaculture research
community, particularly the Roboflow team for provid-
ing dataset support, and our technical collaborators at
xAI for their invaluable assistance in this study.

References

[1] J. Redmon, S. Divvala, R. Girshick, and A. Farhadi, “You
Only Look Once: Unified, Real-Time Object Detection,”
in Proceedings of the IEEE conference on computer vision and
pattern recognition, 2016, pp. 779–788.

[2] YOLOv8.org, [Online]. Available: https://yolov8.org/
what-is-yolov8/, 2024, [Accessed: 20-Jun-2024].

[3] L. O. Chua and L. Yang, “Cellular neural networks:
Theory,” IEEE Transactions on circuits and systems, vol. 35,
no. 10, pp. 1257–1272, 2002.

[4] L. Zhu, X. Wang, Z. Ke, W. Zhang, and R. W. Lau,
“Biformer: Vision transformer with bi-level routing at-
tention,” in Proceedings of the IEEE/CVF conference on
computer vision and pattern recognition, 2023, pp. 10 323–
10 333.

[5] N. O. Salscheider, “Feature NMS: Non-Maximum Sup-
pression by Learning Feature Embeddings,” in Proceed-
ings of the 2020 25th International Conference on Pattern
Recognition (ICPR). IEEE, 2021, pp. 7848–7854.

[6] N. Abinaya, D. Susan, and S. Rakesh Kumar, “Naive
Bayesian Fusion Based Deep Learning Networks for
Multisegmented Classification of Fishes in Aquaculture
Industries,” Ecological Informatics, vol. 61, p. 101248, 2021.

[7] H. T. Rauf, M. I. U. Lali, S. Zahoor, S. Z. H. Shah,
A. U. Rehman, and S. A. C. Bukhari, “Visual Features
Based Automated Identification of Fish Species Using
Deep Convolutional Neural Networks,” Computers and
Electronics in Agriculture, vol. 167, p. 105075, 2019.

[8] S. Z. H. Shah, H. T. Rauf, M. IkramUllah, M. S. Khalid,
M. Farooq, M. Fatima, and S. A. C. Bukhari, “Fish-Pak:
Fish Species Dataset from Pakistan for Visual Features
Based Classification,” Data in brief, vol. 27, pp. 104–565,
Dec. 2019.

[9] A. Banerjee, A. Das, S. Behra, D. Bhattacharjee, N. T.
Srinivasan, M. Nasipuri, and N. Das, “Carp-DCAE: Deep
Convolutional Autoencoder for Carp Fish Classifica-
tion,” Computers and Electronics in Agriculture, vol. 196,
p. 106810, 2022.

[10] S. A. Shammi, S. Das, M. Hasan, and S. R. H. Noori,
“Fishnet: Fish Classification Using Convolutional Neural
Network,” in Proceedings of the 2021 12th International
Conference on Computing Communication and Networking
Technologies (ICCCNT). IEEE, 2021, pp. 1–5.

[11] X. Xu, W. Li, and Q. Duan, “Transfer Learning and SE-
ResNet152 Networks-Based for Small-Scale Unbalanced
Fish Species Identification,” Computers and Electronics in
Agriculture, vol. 180, p. 105878, 2021.

[12] A. Kuswantori, T. Suesut, W. Tangsrirat, and N. Nunak,
“Development of Object Detection and Classification
with YOLOv4 for Similar and Structural Deformed
Fish,” EUREKA: Physics and Engineering, no. 2, pp. 154–
165, 2022.

[13] M. A. Ahmed, M. S. Hossain, W. Rahman, A. H. Uddin,
and M. T. Islam, “An Advanced Bangladeshi Local Fish
Classification System Based on the Combination of Deep
Learning and the Internet of Things (IoT),” Journal of
Agriculture and Food Research, vol. 14, p. 100663, 2023.

[14] B. Gong, K. Dai, J. Shao, L. Jing, and Y. Chen, “Fish-TViT:
A Novel Fish Species Classification Method in Multi
Water Areas Based on Transfer Learning and Vision
Transformer,” Heliyon, vol. 9, no. 6, pp. 1–12, 2023.

[15] M. Sohan, T. Sai Ram, and C. V. Rami Reddy, “A Review
on YOLOv8 and Its Advancements,” in Proceedings of the

International Conference on Data Intelligence and Cognitive
Informatics. Springer, 2024, pp. 529–545.

[16] Z. Zheng, P. Wang, W. Liu, J. Li, R. Ye, and D. Ren,
“Distance-IoU Loss: Faster and Better Learning for
Bounding Box Regression,” in Proceedings of the AAAI
conference on artificial intelligence, vol. 34, no. 07, 2020, pp.
12 993–13 000.

[17] H. Zhang, Y. Wang, F. Dayoub, and N. Sunderhauf,
“VarifocalNet: An IoU-Aware Dense Object Detector,” in
Proceedings of the IEEE/CVF conference on computer vision
and pattern recognition, 2021, pp. 8514–8523.

Assoc. Prof. Nguyen Quang Hoan was
born in 1950, graduated from a university in
Moscow, Russia (formerly the Soviet Union) in
1967. He worked as a research scientist at the
Institute of Information Technology, Vietnam
Academy of Science and Technology, from
1974 to 1998. From 1998 to 2010, he served
as the Head of the Department of Informa-
tion Technology at the Posts and Telecom-
munications Institute of Technology and was
conferred the title of Associate Professor in

2002. His main research interests include machine learning, optimal
control, and intelligent control. He is currently active as a lecturer and
expert in the field. In 2018, he was recognized by UNESCO Vietnam
as one of the 50 most outstanding scientists, with his journey titled
“A Thousand-Mile Journey to Becoming a Neural Network Expert”
introduced to the international scientific community.

Mr. Doan Hong Quang was born in 1979,
received his M.Sc. degree in Computer Sci-
ence from the University of Information Tech-
nology in 2014. He is currently pursuing a
Ph.D. with a research focus on cellular neural
networks and deep learning. He is also the
Head of the Digital Technology Department
at the Center for Microelectronics Technology,
National Center Technological Progress (Na-
centech). His main research interests include
artificial intelligence, the Internet of Things

(IoT), cybernetics, and agricultural automation.

Nguyen The Truyen born in 1964, received
his Bachelor’s degree in Radio-electronic En-
gineering from the Hanoi University of Sci-
ence and Technology in 1988 and a Ph.D.
in Electronic Engineering from the Vietnam
Research Institute of Electronics, Informatics
and Automation in 1999. He currently works
for Vietnam Research Institute of Electron-
ics, Informatics and Automation under the
Ministry of Industry and Trade, Vietnam. His
research interests include signal processing,

the Internet of Things (IoT), artificial intelligence, and Industrial
automation.

Dr. Duong Duc Anh was born in 1984, re-
ceived his Bachelor’s degree in Industrial Au-
tomation from the Hanoi University of Sci-
ence and Technology in 2007, followed by
a Master’s degree in Automation and Con-
trol in 2009. In 2025, he earned a Ph.D. in
Electronic Engineering from the Vietnam Re-
search Institute of Electronics, Informatics and
Automation. His primary research interests
focus on Machine Learning, Neural Networks,
Industrial Automation, Optimal Control, and

Intelligent Control. Dr. Duc Anh is currently serving as Deputy
Director of the Vietnam Research Institute of Electronics, Informatics
and Automation under the Ministry of Industry and Trade, Vietnam.

https://yolov8.org/what-is-yolov8/
https://yolov8.org/what-is-yolov8/

	Introduction
	Related Work
	Contributions

	Methodology and Methods
	Dataset
	Model Architecture
	Backbone
	Neck
	Head

	Training and Loss Functions
	Complete Intersection over Union loss (CIoU)
	Distribution Focal Loss (DFL)
	Binary Cross-Entropy loss (BCE)

	Evaluation Metrics

	Experiments And Discussion
	Evaluation Metrics
	Experimental results
	Comparative Analysis
	Ablation Study
	Discussion

	Conclusion
	Biographies
	Assoc. Prof. Nguyen Quang Hoan
	Mr. Doan Hong Quang
	Nguyen The Truyen
	Dr. Duong Duc Anh


