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Abstract– Existing image recovery methods have demonstrated that original images can be reconstructed from full features.
This work considers a more challenging problem of recovering images from pruned features learned by deep neural
networks. The problem is addressed in this study by introducing a multi-constraint loss function that integrates L2 distance,
sixth-power summation, and total variation regularization to enhance reconstruction quality. This function enhances image
smoothness and fidelity while ensuring that reconstructed images are encoded as vectors closely aligned with the pruned
feature. The proposed loss function enables robust image recovery, preserving key visual features even at high pruning
ratios. Additionally, this study investigates the impact of different pruning levels on reconstruction fidelity, highlighting
the trade-off between pruning efficiency and recoverability. These findings provide valuable insights into inverse problems
in deep learning and image processing, with implications for security risk assessment and feature redundancy analysis.
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1 INTRODUCTION

Feature extraction is a fundamental technique for learn-
ing essential patterns from input data while reducing
dimensionality [1]. Deep learning models, in particular,
effectively extract hierarchical features from images, en-
coding essential visual information compactly through
hidden layers [2]. In this context, the inverse problem
of reconstructing input images from these extracted fea-
tures has received significant attention. The feasibility
of reconstructing images from full (unpruned) deep
features has been established in previous studies. For
instance, Mahendran et al. [3] demonstrated that such
features retain sufficient information to allow image
inversion through optimization techniques, laying the
groundwork for understanding what is encoded in
neural network representations. However, this work
considers a more challenging and less explored prob-
lem: recovering images from pruned features learned
by deep neural networks. Pruning is a widely adopted
technique to create more efficient models by removing
less salient neurons or connections, thereby reducing
computational and storage overhead [4], [5]. While
effective for model compression, pruning inherently in-
troduces information loss, making image recovery sig-
nificantly more difficult compared to unpruned cases.
Structural information within pruned feature spaces
is often diminished, presenting unique challenges for
reconstruction algorithms.

Addressing this problem is crucial for several rea-
sons. First, it provides insight into feature redundancy
within neural networks and evaluates how much mean-
ingful information remains post-pruning. Second, it
supports the development of improved pruning strate-

gies by identifying recoverability limits [6]. Third, it has
significant implications for privacy and security, as it
relates to model inversion attacks where adversaries at-
tempt to reconstruct sensitive data from compressed or
pruned components [7], a concern for data collected by
ubiquitous Internet of Things (IoT) devices. Despite its
importance, the problem of reconstructing images from
pruned features remains largely underexplored. Exist-
ing feature extraction tools, such as autoencoders [1],
are not specifically optimized for this task, especially
when dealing with structurally incomplete features
produced by aggressive pruning.

To address these limitations, a multi-constraint opti-
mization framework is introduced for recovering im-
ages from pruned features. The proposed approach
employs a unified loss function that integrates L2
distance, sixth-power summation, and total variation
regularization to mitigate information loss and enhance
reconstruction fidelity. At the beginning of the recovery
process, a random dummy image is initialized. The L2
distance is then computed by comparing the feature
extracted from the dummy image with the original
pruned feature. The sixth-power summation term is
used to constrain the range of reconstructed images.
Finally, the total variation regularizer ensures image
smoothness by comparing values of neighboring pixels
in reconstructed images. The dummy image can be
found by solving an optimization problem with the
weighted loss function using the Adam optimizer.

Comprehensive experiments on MNIST, CIFAR-100,
and LFWPeople datasets using several deep learn-
ing models to generate pruned features demonstrate
significantly superior performance, achieving lower
Mean Squared Error (MSE), Higher Structural Simi-
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larity Index (SSIM), and Peak Signal-to-Noise Ratio
(PSNR) across all datasets. Furthermore, an in-depth
analysis of the impact of pruning ratios on recov-
ery quality reveals a fundamental trade-off between
pruning efficiency and reconstruction fidelity, provid-
ing insights into the structural importance of retained
features [8]. The key contributions include the devel-
opment of a novel framework for recovering origi-
nal training data from pruned features, experimental
validation across diverse datasets, and a systematic
evaluation of the trade-offs between pruning and recon-
struction quality. These findings advance the fields of
model compression, secure data handling, and feature
redundancy analysis.

The remainder of this paper is structured as follows.
Section 2 reviews related work, section 3 presents the
proposed method, section 4 discusses experimental re-
sults, and section 5 concludes with future directions.

2 RELATED WORK

This section examines image recovery methods, em-
phasizing regularization techniques, full feature limita-
tions, and challenges in reconstructing pruned features.

2.1 Regularization techniques in image recovery
Regularization techniques are critical for addressing

noise suppression, detail preservation, and ambiguity
in image recovery. Total Variation (TV) regularization,
introduced by Rudin et al.[9] has been widely used
to promote smoothness while preserving edges in im-
age reconstruction tasks. Building on this, higher-order
norms, such as the sum of sixth powers proposed in
this study, extended the concept of sparsity-inducing
norms. While L1 regularization (Lasso) is a commonly
adopted approach, researchers like Osher et al.[10]
have demonstrated the advantages of using higher-
order norms in specific scenarios, achieving improved
performance in various image processing applications,
including medical imaging and computer vision. The
integration of multiple regularization techniques has
emerged as a powerful strategy, with studies show-
ing that well-designed combinations often outperform
single-method approaches.

2.2 Image recovery from full and pruned features
Image recovery from deep neural network features

has advanced significantly. Mahendran et al. [3] pio-
neered inversion of full features via optimization, prov-
ing deep features retain recoverable visual information.
Their framework laid the foundation for subsequent
advancements in image reconstruction. Following this,
Nash et al. [11], introduced hierarchical inversion tech-
niques that refine coarse-to-fine details, improving
sharpness and perceptual quality. Yang et al. [12] fur-
ther enhanced inversion techniques by leveraging ad-
versarial alignment, demonstrating improved recovery
performance for complex feature spaces. While most

prior studies have focused on full features, pruned
features introduce additional, particularly challenging
issues due to the substantial information loss during
neuron removal. Despite their efficiency for storage
and privacy [4], achieved through pruning techniques
like structured pruning which are designed to create
compact models [5], the inherent complexity of pruned
networks requires dedicated techniques to compensate
for missing feature information [8].

This gap motivates the present study, which specif-
ically focuses on recovering images from pruned fea-
tures. By analyzing the redundancy in retained features
and assessing the feasibility of reconstruction under
aggressive pruning, this work introduces a specialized
framework aimed at improving image recovery in con-
strained environments.

3 PROPOSED METHOD

This section presents a new multi-constraint loss frame-
work for image recovery from pruned features, explain-
ing its methodology, optimization, and theoretical basis
for reliable validation.

3.1 Method overview
The proposed method aims to recover an original

image xo from its pruned feature hpruned
o , where xo

denotes the input image and hpruned
o is a pruned version

of the full feature vector ho. Here, ho represents the
unpruned feature vector extracted from the penultimate
layer of a convolutional neural network, encapsulating
high-level visual information of xo. The pruned fea-
ture hpruned

o is derived by removing a fraction of neu-
rons from ho based on a pruning ratio, which quantifies
the proportion of discarded features. The ratio ranges
from 0.0, indicating no pruning, to 0.9, corresponding
to 90% neuron removal. The relationship between ho

and hpruned
o directly impacts reconstruction fidelity, as

higher pruning ratios reduce feature dimensionality
and increase information loss.

Figure 1 presents the overall workflow, where a
dummy input xd is iteratively refined using a multi-
constraint loss function to produce the reconstructed
image x∗. Although not part of the core recovery pro-
cedure, a separate evaluation step is applied to measure
reconstruction quality. The process begins by initializ-
ing xd with uniformly sampled pixel values. Through
optimization, xd is adjusted such that its pruned feature
representation hpruned

d , obtained via the network, closely
matches the target hpruned

o . This is achieved by minimiz-
ing a multi-constraint loss function L(x), formulated as

L(x) = αL2LL2 + αsixnormLsixnorm + αTV LTV , (1)

where αL2, αsixnorm, and αTV are weights coefficients
balancing three complementary components:
• L2 Distance: Measures the normalized Euclidean

distance between the dummy and target pruned
features.
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Figure 1. Overview of the proposed image recovery framework and its evaluation.
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• Sixth-power Summation: This term limits pixel val-
ues to prevent excessive growth, enhance features,
avoid flat regions, and reduce noise for smoother
reconstructed images.

Lsixnorm = ∑
i
(xi

d)
6. (3)

• Total Variation (TV): This promotes smoothness
by penalizing high variations between neighboring
pixels [9].

LTV = ∑
i
(xi

d − xi+1
d )2. (4)

A grid search methodology was employed to deter-
mine optimal values for αL2, αsixnorm, and αTV . This pro-
cess evaluated diverse parameter combinations across
datasets to ensure robustness and generalizability. The
selected weights balance reconstruction accuracy, noise
suppression, and spatial coherence while avoiding over-
fitting to specific datasets.

The image recovery process follows an iterative ap-
proach described in Algorithm 1. This algorithm gradu-
ally refines an initial dummy image to match the origi-
nal pruned feature. The process begins with the pruned
feature, denoted as ho

pruned, along with a pre-trained
neural network model and the loss function weights
αL2, αsixnorm, and αTV . To ensure adaptability across
diverse recovery scenarios, key operational parameters
such as the learning rate and maximum iteration count
are predefined. At the start, a dummy image xd is
initialized with pixel values randomly sampled from
a uniform distribution within a specified range [r1, r2].
In this work, the parameters are set as r1 = 0 and
r2 = 1. In each iteration, the algorithm performs three
main steps. First, forward propagation generates the
pruned feature hpruned

d for the dummy image. Next,
the multi-constraint loss function L(x) is evaluated to
quantify the discrepancy between hpruned

d and hpruned
o .

In the update phase, the Adam optimizer is employed
with the specified learning rate to iteratively refine xd
in the direction that minimizes L(x). To maintain the
reconstructed image within the valid pixel range [0, 1],
a clipping operation is performed after each update.

The process continues until the loss difference between
consecutive iterations falls below a predefined thresh-
old ϵ, indicating convergence, or the maximum number
of iterations is reached. Once completed, the algorithm
outputs the optimized image x∗, which serves as the
recovered visual content based on the pruned features.

Algorithm 1 Multi-constraint loss optimization for im-
age recovery from pruned features

1: Input:
2: Pruned original feature hpruned

o
3: Neural network model
4: Loss weights {αL2, αsixnorm, αTV}
5: Parameters:
6: Learning rate lr
7: Maximum iterations maxiters
8: Initialization:
9: Initialize dummy image xd ∼ U [0, 1] ▷ Uniform

distribution
10: Optimization:
11: for iter = 1 to maxiters do
12: Forward pass:
13: Compute pruned dummy feature hpruned

d
14: Loss computation:

15: LL2 ←
∥∥∥hpruned

o −hpruned
d

∥∥∥2

2∥∥∥hpruned
o

∥∥∥2

2

▷ L2 distance

16: Lsixnorm ← ∑
i
(xi

d)
6 ▷ Sixth power term

17: LTV ← ∑
i
(xi

d − xi+1
d )2 ▷ Total variation

18: L(x)← αL2LL2 + αsixnormLsixnorm + αTV LTV
19: Update step:
20: Update xd using Adam optimizer with lr
21: xd ← clip(xd, 0, 1) ▷ Ensure valid pixel range
22: if ∥L(x)iter − L(x)iter−1∥ < ϵ then ▷ Check

convergence
23: break
24: end if
25: end for
26: Output: Recovered image x∗

3.2 Theoretical analysis
The proposed method addresses the challenging task

of image recovery from pruned neural network fea-
tures, requiring a specialized approach due to the
inherent complexity of deep networks and the infor-
mation loss caused by pruning. To achieve this, the
method employs a unified loss function that integrates
multiple constraints to enhance reconstruction qual-
ity. The normalized L2 distance term is introduced
to minimize discrepancies between the reconstructed
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image and the pruned feature, aligning with pre-
vious findings on effective loss functions in image
recovery [3]. Additionally, the sum of sixth powers
effectively regulates pixel intensity distribution, im-
proving image stability and detail retention, as sup-
ported by Osher et al. [10]. Total variation regularization
further enhances spatial consistency by suppressing
noise while preserving sharp edges, a technique widely
adopted in image processing since its introduction by
Rudin et al. [9]. The combination of these constraints en-
sures improved reconstruction fidelity and robustness
in recovering pruned features.

Unlike autoencoder-based methods that require ex-
tensive pre-training on large datasets, the proposed
approach leverages a direct optimization strategy, elim-
inating dependency on dataset-specific models. This
design enhances computational efficiency and adapt-
ability across various pruning conditions, aligning with
recent trends in lightweight neural network recov-
ery frameworks suitable for IoT and edge computing
paradigms. Such an approach proves advantageous
when compared to generative adversarial networks,
which often require significant training resources
and may face instability issues during the learning
process [13]. By integrating multiple constraints in a
unified framework, the proposed method effectively re-
constructs key image features from heavily pruned data
while maintaining efficiency. This targeted approach
offers a robust solution for image recovery in appli-
cations such as model compression, privacy-preserving
networks, and resource-constrained environments. The
method’s capacity to address aggressive pruning sce-
narios highlights its practical relevance in real-world
computer vision tasks.

4 PERFORMANCE EVALUATION

This section assesses the proposed method’s ability,
covering experimental setup, visual analysis, and quan-
titative evaluation of pruning effects.

4.1 Experimental setup
Experiments were conducted on three bench-

mark datasets: MNIST (grayscale handwritten digits),
CIFAR-100 (color object images), and LFWPeople (fa-
cial photographs). A LeNet-based CNN was trained
on each dataset, and pruned feature vectors were ex-
tracted from its penultimate layer. Neuron pruning was
performed using a magnitude-based approach, where
neurons with the lowest activation values were pro-
gressively removed. The pruning ratio ranged from 0.0,
indicating no pruning, to 0.9, representing the removal
of 90 percent of neurons, with increments of 0.1. It
should be noted that the no pruning condition (i.e., a
pruning ratio of 0.0), where images are reconstructed
from the full set of features, is comparable to scenarios
examined in foundational studies on gradient inversion
attacks, such as the work of Zhu et al. [14]. This setting
serves as a standard baseline for evaluating attacks
on complete, unpruned representations, and has been

similarly explored in prior work, including [15]. Op-
timization was performed using the Adam optimizer
with a learning rate of 0.01 over 2,000 iterations, start-
ing from dummy images uniformly initialized in the
range [0, 1]. Hyperparameters α were tuned via grid
search: For MNIST and CIFAR-100 datasets, values
were αL2 = 103, αsixnorm = 10−7, αTV = 10−4,
while for the LFW dataset, the corresponding values
were αL2 = 103, αsixnorm = 10−9, αTV = 5.10−7. These
hyperparameters were selected to balance data fidelity,
regularization constraints, and smoothness, ensuring
optimal reconstruction performance across all datasets.
As an illustrative example, the tuning process for the
CIFAR-100 dataset is detailed in the Appendix. Per-
formance was assessed using 20 randomly sampled
images per dataset and three metrics: MSE for pixel-
wise accuracy, SSIM for structural similarity, and PSNR
for perceptual quality.

4.2 Visualization of data reconstruction
The qualitative effectiveness of the proposed method

was assessed through visual reconstruction on three
datasets: MNIST, CIFAR-100, and LFWPeople, using a
representative pruning ratio of 0.3. Figure 3 illustrates
the iterative reconstruction process, starting from a
randomly initialized image and progressing through
multiple optimization steps to the final output at 2,000
iterations. The iterative process demonstrated adapt-
ability to varying image complexities and the capacity
to recover semantically meaningful features despite
pruning-induced data loss.

For MNIST, digit structures begin to emerge within
the first 100 iterations, with clear contours forming
early in the process. By iteration 2,000, the recon-
structed digits closely resemble the ground truth, ac-
curately preserving stroke patterns and spatial layout.
In the CIFAR-100 dataset, the method effectively re-
constructs color-rich images, with object boundaries
and textures becoming recognizable in early stages
and progressively refined over time. Although slight
smoothing is observed in high-frequency regions, color
gradients and structural details are largely retained.
On the LFWPeople dataset, the method successfully
reconstructs facial features, such as eye contours and
expressions, with increasing clarity. The outputs main-
tain structural coherence and spatial fidelity despite the
loss of some feature-level information due to pruning.

Across all datasets, four consistent trends under-
score the method’s robustness. Critical visual features
emerge early in the optimization process, often within
100 to 500 iterations, and refine progressively. Fine-
grained details, including digit strokes in MNIST, ob-
ject textures in CIFAR-100, and facial landmarks in
LFWPeople, are preserved with high precision. High-
frequency noise and artifacts diminish significantly in
later iterations, particularly beyond 1,500 iterations,
ensuring perceptual clarity. Furthermore, the method
maintains sharp object boundaries and faithful color re-
production, crucial for applications requiring accurate
visual recovery.
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Figure 2. Progression of image generation across different datasets and iterations using L1 distance with a pruning ratio of 0.3.
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Figure 3. Progression of image generation across different datasets and iterations using L2 distance with a pruning ratio of 0.3.

These results validate the efficacy of the multi-
constraint loss framework, which integrates L2 feature
alignment, sixth-power intensity regularization, and to-
tal variation-based spatial smoothing. The method con-
sistently achieves high-quality reconstructions across
datasets within 2,000 iterations, demonstrating robust-
ness to pruning-induced information loss and adapt-
ability to varying image complexities.

4.3 Impact of pruning ratios
This study examines how different pruning levels

affect image reconstruction quality across the datasets.
To provide a statistically robust evaluation of the pro-
posed method, experiments were conducted across a
range of pruning ratios. Figures 4 and 5 summarize the
performance metrics for reconstruction using L1 and L2
distance, respectively, on the MNIST, CIFAR-100, and
LFWPeople datasets. For each pruning ratio, the results
were averaged over 20 distinct test samples. In the
figures, each data point represents the mean of the
performance metric (MSE, SSIM, and PSNR), while the
corresponding error bars depict the standard deviation.
This visualization allows for a clear assessment of both
the performance and the consistency of our method.
The results demonstrate that the proposed approach
maintains strong reconstruction quality (low MSE,
high SSIM/PSNR) with low variance, even as the infor-
mation loss from pruning increases. This underscores
the robustness and reliability of the proposed multi-
constraint loss function. Notably, Figure 4 presents the
results of the L1-based approach, which is also shown
visually in Figure 2 while Figure 5 illustrates the L2-
based method described in this study. The use of an L2
distance term in the loss function consistently yields
slight improvements in terms of MSE, SSIM, and PSNR

values across most pruning ratios and datasets. This
observation supports its integration into the proposed
multi-constraint loss framework to enhance reconstruc-
tion fidelity. Higher MSE reflects reduced pixel-level
accuracy, while declining SSIM and PSNR values in-
dicate diminished structural and perceptual fidelity.
Performance degradation exhibits nonlinear behavior.
At moderate pruning levels, specifically in the range
from 0.0 to 0.6, mean squared error gradually increases
by approximately 5 to 30%, while structural similarity,
and peak signal-to-noise ratio decrease by around 3
to 15%, and 1 to 5 dB, respectively. These trends suggest
that some lost information remains recoverable. Beyond
a critical threshold, ranging from 0.7 to 0.9, metrics
deteriorate abruptly, with MSE escalating by 80 to 120%
and PSNR collapsing below 22 dB for complex datasets
like LFWPeople. This signifies irreversible feature loss
due to excessive pruning.

Dataset complexity profoundly influences robustness
to pruning. MNIST, characterized by simple grayscale
digit structures, demonstrates superior resilience, main-
taining PSNR above 28 dB even at a 0.7 pruning ratio.
In contrast, CIFAR-100 and LFWPeople, which feature
intricate color variations and textures, experience accel-
erated quality degradation. For instance, LFWPeople’s
PSNR drops to 21.5 dB under 90% pruning, under-
scoring the challenge of reconstructing nuanced facial
features from highly pruned features.

These findings highlight a fundamental trade-off be-
tween pruning efficiency and reconstruction fidelity.
Notably, as shown in Table I, the average runtime
per sample remains stable across different datasets
and pruning ratios. Specifically, the runtime ranges
from 11.5 to 11.9 seconds across datasets, with MNIST
achieving 11.549 seconds, CIFAR-100 achieving 11.815
seconds, and LFWPeople achieving 11.935 seconds.
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Figure 4. Performance metrics using L1 distance versus pruning ratios for the datasets.

Figure 5. Performance metrics using L2 distance versus pruning ratios for the datasets.

This consistency indicates that the computational cost
of the method is largely independent of the input data
complexity or the degree of feature pruning, making
this approach feasible and efficient for various appli-
cations. While aggressive pruning reduces computa-
tional demands, it imposes strict limits on recoverable
image quality, especially for datasets with high visual
complexity. The proposed multi-constraint framework
achieves high SSIM and PSNR values, thereby vali-
dating its effectiveness in mitigating information loss
across diverse pruning scenarios. This balance positions
the method as a practical solution for applications, such
as edge AI in IoT systems, that prioritize both compu-
tational efficiency and high-quality image recovery.

Table I
Computational efficiency across datasets on the LeNet model

Datasets Image Resolution Real-time tasks Feature Size Runtime (s)
MNIST 28× 28 Handwritten digits 588 11.549

CIFAR-100 32× 32 Object recognition 768 11.815
LFWPeople 250× 250 Facial recognition 47628 11.935

A further investigation into the data reconstruc-
tion capability of the proposed method was con-
ducted using the ResNet-14 model. Some images from
CIFAR-100 are selected for the experiment. As can be
seen in Figure 6, images can be reconstructed with clear

patterns like original images. The collected results show
that our method can recover training inputs even when
using pruned representations of images.

5 CONCLUSION

This study presents a multi-constraint loss function
for image recovery from pruned features. The pro-
posed approach balances pruning efficiency and re-
construction quality, enabling accurate image recovery
while preserving essential visual features. The results
demonstrate the effectiveness of this method under
varying pruning conditions. However, certain limita-
tions remain, particularly at high pruning ratios, where
recovery accuracy declines, and sensitivity to pertur-
bations increases. Future research could focus on im-
proving robustness to transmission errors, optimizing
adaptive parameter tuning, and integrating advanced
deep learning models to enhance recovery accuracy
and efficiency.

The presented research provides valuable insights
into inverse problems in deep learning by introducing
a notably flexible approach to image recovery. The
method is particularly beneficial in scenarios with lim-
ited training data, such as privacy-sensitive environ-
ments or resource-constrained settings like those found
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Figure 6. Performance of the proposed method with the
ResNet architecture.

in distributed IoT deployments. While requiring further
validation and domain-specific investigation, there is
potential for this approach to be explored in applica-
tions such as medical imaging, where efficient feature
and information recovery are crucial, and where under-
standing the impact of feature pruning on diagnostic
information could be valuable. Additionally, it may
assist in security risk assessments by demonstrating the
potential to recover key image features from pruned
data, thereby highlighting privacy vulnerabilities in
cyber-physical systems.
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APPENDIX

This appendix details the systematic grid search per-
formed to determine the optimal hyperparameters αL2,
αsixnorm, and αTV for the CIFAR-100 dataset. Metrics
MSE, SSIM, and PSNR are employed to find the op-
timal hyperparameters. The results of this process are
summarized below:

Step 1: Optimize the αL2 coefficient
In this step, we adjust the value αL2 within the set

[102, 103, 104]. The other two parameters are fixed:
αsixnorm = 10−7 and αTV = 10−4. The experimental
results are presented in Table II. Based on the ex-
perimental results, αL2 = 103 yields the best results,
demonstrated by an optimal balance across MSE, SSIM,
and PSNR metrics.

Step 2: Optimize the αsixnorm coefficient
In this step, we adjust the αsixnorm value within the

set [10−6, 10−7, 10−8]. The other two parameters are
fixed: αL2 = 103 and αTV = 10−4. The experimental

results are presented in Table III. Based on the exper-
imental results, αsixnorm = 10−7 yields the best results,
demonstrated by an optimal balance across MSE, SSIM,
and PSNR metrics.

Step 3: Optimize the αTV coefficient
In this step, we adjust the αTV value within the

set [10−3, 10−4, 10−5]. The other two parameters are
fixed: αL2 = 103 and αsixnorm = 10−7. The experimental
results are presented in Table IV. Based on the exper-
imental results, αTV = 10−4 yields the best results,
demonstrated by an optimal balance across MSE, SSIM,
and PSNR metrics.

Through systematic experimentation on the
CIFAR-100 dataset, the optimal parameter set
was identified as αL2 = 103, αsixnorm = 10−7, and
αTV = 10−4, which achieves a robust balance among
the evaluation metrics (MSE, SSIM, and PSNR), with
its effectiveness demonstrated by the results presented
in Tables II, III, and IV.
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Table II
Evaluation metric (MSE, SSIM, and PSNR) across pruning ratios with different αL2 values

Metrics MSE SSIM PSNR

αL2 102 103 104 102 103 104 102 103 104

Pruning Ratios

0 0.01977 0.00646 0.00438 0.28084 0.71023 0.80127 17.03968 21.89671 23.58292

0.1 0.01917 0.00617 0.00443 0.29243 0.72542 0.78765 17.17418 22.09693 23.54023

0.2 0.01817 0.00587 0.00526 0.30695 0.73737 0.74699 17.40751 22.31720 22.78693

0.3 0.01732 0.00599 0.00593 0.32579 0.74087 0.71179 17.61335 22.22286 22.26769

0.4 0.01692 0.00629 0.00780 0.32271 0.72766 0.63284 17.71657 22.01028 21.07911

0.5 0.01589 0.00699 0.00928 0.34897 0.71710 0.59176 17.99007 21.55603 20.32503

0.6 0.01502 0.00819 0.01297 0.37478 0.64537 0.41745 18.23325 20.86679 18.87135

0.7 0.01429 0.00924 0.01458 0.41676 0.59048 0.41548 18.44948 20.34145 18.36176

0.8 0.01306 0.01141 0.02249 0.45313 0.44769 0.19775 18.84055 19.42673 16.47938

0.9 0.01450 0.01806 0.03679 0.40301 0.27491 0.04310 18.3867 17.43318 14.34270

Table III
Evaluation metrics (MSE, SSIM, and PSNR) across pruning ratios with different αsixnorm values

Metrics MSE SSIM PSNR

αsixnorm 10−6 10−7 10−8 10−6 10−7 10−8 10−6 10−7 10−8

Pruning Ratios

0 0.01488 0.00646 0.00645 0.69062 0.71023 0.71155 18.27299 21.89671 21.90682

0.1 0.01413 0.00617 0.00618 0.69673 0.72542 0.72540 18.50011 22.09693 22.09091

0.2 0.01496 0.00587 0.00588 0.68851 0.73737 0.73675 18.25095 22.3172 22.30419

0.3 0.01407 0.00599 0.00601 0.69844 0.74087 0.74099 18.51692 22.22286 22.21410

0.4 0.01432 0.00629 0.00632 0.68980 0.72766 0.72723 18.44140 22.01028 21.99596

0.5 0.01565 0.00699 0.00701 0.66715 0.71710 0.71726 18.05527 21.55603 21.54554

0.6 0.01870 0.00819 0.00821 0.60850 0.64537 0.64550 17.28153 20.86679 20.85906

0.7 0.02457 0.00924 0.00925 0.56638 0.59048 0.59093 16.09623 20.34145 20.33901

0.8 0.02805 0.01141 0.01154 0.50102 0.44769 0.44106 15.52082 19.42673 19.37803

0.9 0.04543 0.01806 0.01796 0.29414 0.27491 0.27807 13.42620 17.43318 17.45678

Table IV
Evaluation metric (MSE, SSIM, and PSNR) across pruning ratios with different αTV values

Metrics MSE SSIM PSNR

αTV 10−3 10−4 10−5 10−3 10−4 10−5 10−3 10−4 10−5

Pruning Ratios

0 0.01975 0.00646 0.00438 0.28275 0.71023 0.80041 17.04509 21.89671 23.58492

0.1 0.01915 0.00617 0.00443 0.29485 0.72542 0.78654 17.1779 22.09693 23.53643

0.2 0.01818 0.00587 0.00528 0.30793 0.73737 0.74570 17.40364 22.31720 22.77572

0.3 0.01734 0.00599 0.00594 0.32706 0.74087 0.71064 17.61054 22.22286 22.26297

0.4 0.01694 0.00629 0.00774 0.32342 0.72766 0.63383 17.71136 22.01028 21.11119

0.5 0.01589 0.00699 0.00929 0.35045 0.71710 0.59617 17.98756 21.55603 20.31924

0.6 0.01503 0.00819 0.01302 0.37600 0.64537 0.40982 18.23019 20.86679 18.85362

0.7 0.01434 0.00924 0.01436 0.41844 0.59048 0.42573 18.43308 20.34145 18.42738

0.8 0.01311 0.01141 0.02231 0.45592 0.44769 0.19318 18.82423 19.42673 16.51504

0.9 0.01450 0.01806 0.03710 0.40387 0.27491 0.04613 18.38535 17.43318 14.30677


