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Abstract- Saccade detection is a fundamental task in visual behavior analysis and vestibular diagnostics. However, video
Head Impulse Test (VHIT) recordings are often noisy, heterogeneous, and affected by class imbalance, particularly for
covert saccades. In this paper, we propose EyeTrackDL, a lightweight yet effective deep learning framework based on a
multilayer perceptron (MLP) architecture for classifying three types of eye movements: non-saccades, overt saccades, and
covert saccades. Input signals are preprocessed using a fourth-order Butterworth filter, and two high-level features (onset
time and duration) are extracted per saccade. To address data scarcity and imbalance, we apply SMOTE resampling and
incorporate synthetic data generated from a kinematic vestibulo-ocular reflex (VOR) model. The model is evaluated using
K-fold cross-validation (K = 2 to 10) on both real and simulated datasets. Results show that EyeTrackDL achieves an average
accuracy of up to 96.5% on simulated data and approximately 83% in the real data, with significant improvements in the
sensitivity of the covert saccades. Our findings demonstrate the potential of integrating simulation-based augmentation and
class balancing for robust saccade detection in clinical environments.

Keywords— Saccade detection, video Head Impulse Test (VHIT), multilayer perceptron (MLP), simulated vestibular data,

SMOTE, classification of eye movements, class imbalance, deep learning in healthcare.

1 INTRODUCTION

1.1 Overview

Saccadic eye movements are rapid, ballistic shifts in
gaze that enable the fovea to fixate on new targets in
the visual field. They constitute a critical mechanism in
the human oculomotor system, ensuring efficient visual
exploration and stable perception during active gaze
shifts [1]. Given their diagnostic relevance, accurate
saccade detection has become increasingly important
in clinical and cognitive neuroscience [2, 3].

In clinical contexts, tools such as the video Head Im-
pulse Test (VHIT) are commonly used to assess vestibulo-
ocular reflex (VOR) by capturing coordination between
head and eye movements. The ability to distinguish
between overt and covert saccades in vHIT record-
ings is particularly crucial, as covert saccades often
reflect subtle compensatory mechanisms in patients
with vestibular dysfunction [4]. However, the detection
and classification of these saccades is a nontrivial task,
owing to various factors such as sensor noise, patient
variability, and the brief and low-amplitude character-
istics of covert saccades.

Traditional algorithms for saccade detection have
relied on velocity thresholds [5], dispersion metrics, or
rule-based heuristics [6]. While these methods can be
effective under controlled conditions, they often exhibit
sensitivity to measurement artifacts and require careful

parameter tuning, limiting their applicability in clinical
practice. Furthermore, the rise of mobile and embedded
eye-tracking systems introduces additional challenges
regarding data quality and consistency.

Recent advances in deep learning have demonstrated
promising results in automating saccade detection,
achieving significant improvements in accuracy, gener-
alizability, and noise robustness [7, 8]. Convolutional
and recurrent neural networks have been increasingly
successful in processing continuous gaze signals. How-
ever, existing models still face key limitations: (i) re-
liance on large annotated datasets, which are scarce
in clinical settings; (ii) low sensitivity to rare saccade
types, particularly covert saccades; and (iii) limited
performance when applied to data with high inter-
patient variability.

In this work, we present EyeTrackDL, a compact
and robust deep learning framework for saccade clas-
sification in VHIT recordings. The framework com-
bines real clinical data with simulated vestibular sig-
nals generated from a kinematic VOR model and em-
ploys SMOTE-based data balancing to address class
imbalance. By leveraging high-level, interpretable fea-
tures and a multilayer perceptron (MLP) architecture,
EyeTrackDL achieves strong performance under data-
limited and noise-prone conditions, making it suitable
for real-world clinical deployment.
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1.2 Issue Statement

Despite the increasing adoption of eye-tracking tech-
nologies like the video Head Impulse Test (vHIT) in
vestibular diagnostics, saccade detection still relies pri-
marily on manual review or threshold-based heuristics.
These conventional methods often perform poorly un-
der the noisy, non-uniform conditions characteristic of
real-world clinical data.

Most current deep learning models for saccade clas-
sification have been trained on experimental datasets
from cognitive science or behavioral studies, limiting
their generalizability to clinical recordings. This creates
two critical problems:

1) Lack of high-quality annotated data, particularly
for covert saccades that are subtle, brief, and
frequently underrepresented in datasets.

2) Severe class imbalance that biases learning al-
gorithms toward dominant classes (e.g., non-
saccades or overt saccades).

Moreover, prior studies have rarely exploited simu-
lated data to augment training sets, despite its potential
to generate diverse, controlled examples. Consequently,
there is a need for a lightweight yet robust deep learn-
ing framework that leverages both real and synthetic
data to address the practical challenges of saccade
classification in noisy clinical settings.

1.3 Our Contributions

To overcome these limitations, we introduce
EyeTrackDL, an efficient deep learning framework
for accurate saccade detection and classification in
clinical vHIT recordings. The main innovations of our
approach are:

1) We developed a preprocessing and labeling
pipeline that extracts saccadic events from eye-
head velocity data using physiologically informed
thresholding and a fourth-order Butterworth filter,
classifying events into non-saccades, covert sac-
cades, and overt saccades.

2) We implemented a compact Multilayer
Perceptron (MLP) architecture that operates
on two key features—saccade onset time and
duration-enabling real-time performance in
clinical applications.

3) We created a hybrid training dataset combining
real VHIT recordings with synthetic data
generated from a kinematic VOR model,
facilitating ~ structured = augmentation  of
underrepresented classes.

4) We employed SMOTE-based resampling to ad-
dress class imbalance, significantly improving
covert saccade detection while maintaining per-
formance on dominant classes.

5) We conducted extensive evaluation using nine k-
fold cross-validation configurations (K = 2 to 10),
reporting per-class metrics (accuracy, sensitivity,
specificity) and analyzing the impact of data
source (real vs. synthetic) on performance.

Collectively, these contributions demonstrate that
EyeTrackDL achieves both high performance (96.5%

average accuracy) and clinical utility, offering a gener-
alizable and scalable solution for vestibular diagnostics.
The remainder of this paper is structured as follows:

e Section 2 — Related Work reviews saccade de-
tection methods from classical threshold-based ap-
proaches to recent deep learning techniques, iden-
tifying key gaps in existing research.

e Section 3: Background covers the physiology
of saccadic eye movements, clinical measurement
techniques, simulated data applications, and the
theoretical basis of our model.

o Section 4: Methodological Framework details
the EyeTrackDL pipeline, including signal prepro-
cessing, saccade labeling, data augmentation, and
model architecture.

o Section 5: Experimental Setup describes the
datasets (real and simulated), evaluation metrics,
and experimental environment.

o Section 6: Results and Discussion analyzes clas-
sification performance across folds and classes,
examines SMOTE and simulation effects, and dis-
cusses findings with limitations.

e Section 7: Conclusion summarizes contributions
and suggests future research directions.

2 RELATED WORKS

Saccade detection is crucial for both visual behavior
analysis and clinical diagnostics. Early approaches re-
lied on velocity-based thresholds, such as the Eng-
bert and Mergenthaler algorithm [5], which identifies
microsaccades using adaptive velocity thresholds. Al-
though straightforward to implement, these methods
are sensitive to measurement noise and require manual
parameter tuning. Otero-Millan et al. [9] developed an
unsupervised clustering approach that estimates sac-
cade onset and offset, but this method still performs
poorly in high-noise conditions.

To address these limitations, researchers have in-
creasingly turned to deep learning approaches. Un’Eye
(Bellet et al., 2019) [7] proposed a CNN-based classifier
that processes horizontal and vertical eye velocity sig-
nals, achieving human-level performance on multiple
benchmark datasets. Their U-Net-inspired architecture
demonstrates strong generalization across unseen sub-
jects and experimental conditions while maintaining
robustness in noisy environments.

Alternative deep learning approaches have shown
promising results. Startsev et al. [8] combined 1D CNNs
with bidirectional LSTMs to model temporal depen-
dencies in gaze data. Zemblys et al. [10] employed
a generative adversarial network (GAN) to augment
limited labeled datasets. Mihali ef al. [11] introduced a
Bayesian generative model that provides both microsac-
cade predictions and uncertainty estimates. While prob-
abilistic approaches like those of Daye and Optican [12]
and threshold-based methods such as Pekkanen and
Lappi [13] offer valuable baselines, they remain de-
pendent on parametric tuning and perform best under
specific experimental conditions.
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Although deep neural networks achieve superior
accuracy and generalizability compared to traditional
methods, they still require substantial annotated train-
ing data. A particular challenge is class imbalance,
which is especially prevalent in real-world saccade
datasets and complicates classifier optimization. Our
approach addresses these limitations through two com-
plementary strategies: (1) simulated data augmentation
and (2) SMOTE-based resampling, which together im-
prove detection robustness in data-scarce scenarios.

However, many prior works have focused primar-
ily on overt or microsaccades and have not explicitly
targeted covert saccade detection, which is clinically
more challenging due to its subtle kinematic profile and
lower signal amplitude. Moreover, most deep learning
models rely on high-dimensional raw signals (e.g., full
eye velocity traces), requiring considerable preprocess-
ing and compute resources. In contrast, our model
demonstrates that using only two interpretable fea-
tures can yield competitive performance, particularly
when supported by domain-specific simulation and
class balancing.

To contextualize our approach, we directly compare
it against both traditional threshold-based and con-
temporary deep learning methods in Table 1. While
U'n’Eye and LSTM-based models capture fine-grained
temporal dynamics, they typically lack explicit mecha-
nisms for handling rare-event classification and require
more training time and data. Our MLP-based approach
trades off sequence modeling for simplicity and speed,
while still maintaining robust detection of covert sac-
cades—an area where most prior models struggle.

Table I summarizes representative saccade detection
methods, from classical threshold-based approaches
to contemporary deep learning models. While early
techniques like those of Engbert and Mergenthaler [5]
and Otero-Millan et al. [9] provide computational sim-
plicity and real-time performance, they exhibit lim-
ited noise robustness and poor temporal resolution for
event duration.

Deep learning approaches like those of Startsev et
al. [8] and Bellet et al. [7] achieve superior accuracy
and temporal modeling capabilities. However, these
methods still require large amounts of precisely labeled
training data and fail to explicitly address class imbal-
ance, potentially compromising their sensitivity to rare
saccadic events like covert saccades.

Our proposed framework advances the field in three
key dimensions:

o Incorporates simulated vestibular data generated
from a kinematic VOR model, enabling controlled
augmentation of underrepresented classes

o Utilizes SMOTE-based class balancing to signifi-
cantly enhance detection sensitivity for minority-
class events

o Employs a computationally efficient MLP architec-
ture that processes high-level features (onset and
duration), eliminating the need for high-resolution
temporal sequences or sensor-specific calibration

e Demonstrates competitive or superior covert sac-
cade detection performance compared to existing

methods, while maintaining low training time and
model complexity—an advantage for deployment
in time-sensitive or embedded clinical settings
Together, these strategies achieve performance com-
parable to or better than deeper architectures while
demonstrating superior generalizability to noisy, imbal-
anced clinical datasets.

3 BACKGROUND

3.1 Physiology of Saccadic Eye Movements and
Clinical Measurement Techniques

Saccadic eye movements represent rapid, ballistic
shifts in gaze position that realign the fovea with vi-
sual targets. With amplitudes typically ranging from 1°
to 20° and durations between 20-80 ms (depending on
target distance and urgency), these movements consti-
tute a fundamental component of the human oculo-
motor system. They facilitate efficient visual scanning
and enable the acquisition of behaviorally relevant sen-
sory information.

Neurophysiologically, saccades are controlled by a
distributed network comprising the vestibular nu-
clei, superior colliculus, cerebellum, frontal eye fields,
and associated cortical-subcortical circuits. This net-
work integrates vestibular and visual sensory inputs
to generate coordinated motor commands for the
extraocular muscles.

During normal head movements, retinal image dis-
placement is counteracted by the VOR, which generates
compensatory eye movements opposite to head motion
to maintain visual stability. In vestibular hypofunction,
however, the VOR’s compensatory capacity becomes
impaired, leading to blurred vision during head move-
ments. To restore gaze stability, the central nervous
system produces compensatory saccades that realign the
fovea with the intended visual target.

These compensatory saccades are generally classified
as follows:

e Overt saccades: Occur after head movement
cessation and are readily detectable by video
recording systems.

o Covert saccades: Occur during active head mo-
tion, appearing more subtle due to overlap with
the VOR response and consequently being more
challenging to detect.

In clinical practice, the vHIT serves as the gold
standard for vestibular assessment. The test delivers
brief, unpredictable head impulses while simultane-
ously measuring head and eye angular velocities via
infrared video-oculography and inertial sensors inte-
grated into specialized goggles. Clinicians analyze the
resulting eye-head velocity profiles to quantify VOR
gain and detect compensatory saccades.

Nevertheless, several factors limit the accuracy of
vHIT recordings:

o Signal artifacts from improper goggle fit, eyelid

interference, or ambient light contamination

o Calibration errors causing misalignment between
eye and head velocity baselines
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Table I
COMPARISON OF RELATED METHODS IN SACCADE DETECTION

Study Method Type Label Type Strengths Limitations
Engbert & Mergenthaler | Unsupervised Microsaccade | Simple, adaptive | Poor under noise,
(2006) [5] only thresholds only onset detec-
tion
Otero-Millan et al. | Unsupervised Onset + Off- | Detects full sac- | Fails in high-
(2014) [9] set cade duration noise recordings
Daye & Optican (2014) [12] | Probabilistic Onset + Off- | Particle filter | Requires parame-
set modeling ter tuning

Pekkanen & Lappi | Supervised Onset + Off- | Handles smooth | Requires  dual-
(2017) [13] set pursuit scenarios | threshold tuning

Zemblys et al. (2018) [10] Deep Learning + | Full labels Generates Limited
GAN training data | benchmarking
effectively
Startsev et al. (2018) [8] CNN + BiLSTM Full labels Models temporal | Lower
patterns well performance

near boundaries

Mihali et al. (2017) [11] Bayesian Model

Onset proba- | Captures Requires
bilities uncertainty probabilistic
tuning

Bellet et al. (2019) [7] CNN (U-Net)

Full labels

Human-level ac- | Class imbalance

curacy, robust

o Challenges in detecting covert saccades due to
their temporal overlap with head impulses and
smaller amplitudes

These limitations underscore the need for robust
automated saccade detection algorithms capable of reli-
ably distinguishing between covert and overt saccades,
particularly in noisy clinical recordings with ambigu-
ous signals.

3.2 Simulated Vestibular Data and Its Role in
Biomedical Machine Learning

Neuro-vestibular research faces significant data col-
lection challenges, including reliance on specialized
equipment, high inter-patient variability, and label-
ing inconsistencies from subjective annotations. Fur-
thermore, available datasets typically exhibit severe
class imbalance, with clinically important categories
like covert saccades being both underrepresented and
technically challenging to capture. These constraints
have established simulated data as a strategic solu-
tion for augmenting machine learning pipelines in
vestibular applications.

The vestibulo-ocular reflex (VOR) is a critical
physiological mechanism that stabilizes gaze dur-
ing head movements by generating compensatory
eye movements. Modeling this reflex provides a
principled foundation for generating synthetic eye
movement signals.

Through computational modeling of vestibulo-ocular
reflex (VOR) dynamics, synthetic datasets can be sys-
tematically generated with controlled parameters. Key
simulation variables include head angular velocity, sac-
cadic amplitude, event timing, and onset duration.

We implemented a kinematic VOR model, which uses
predefined mathematical relationships between head

motion and resulting eye trajectories. This approach
enables the creation of physiologically plausible sac-
cade patterns by varying motion profiles and timing
parameters under controlled noise conditions.

This methodology enables precise generation of both
covert and overt saccades while ensuring controlled
variability and full reproducibility.

Simulated vestibular data additionally functions as
an effective augmentation strategy, expanding the train-
ing distribution and improving model generalizability
across diverse inputs. For our MLP classifier, we com-
bined artificially generated sequences with real vHIT
recordings during training, ultimately enhancing both
classification accuracy and robustness in differentiating
saccade types.

3.3 Deep Learning Foundations for Multiclass
Classification

Deep learning, a machine learning subfield, utilizes
artificial neural networks (ANNs) with multiple pro-
cessing layers to model complex nonlinear data rela-
tionships [14]. The MLP represents one of the most
fundamental architectures, demonstrating particular ef-
fectiveness for structured input data and discrete clas-
sification tasks.

In the context of multiclass classification, the objec-
tive is to learn a function f : RY — {1,2,...,,C} that
maps each input vector x € RY to one of C discrete
classes. An MLP achieves this by learning intermediate
representations through stacked layers of neurons, each
performing a linear transformation followed by a non-
linear activation.

The forward pass of an MLP with L hidden layers
can be mathematically expressed as
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: 1)
h(L) — ¢ (W(L)h(L—l) + b(L))
y = Softmax (W(Lﬂ)h(L) + b(L+l)) )

here, W) € R4*%-1 and b(!) € R¥ are the weight
matrix and bias vector of layer I, ¢(-) denotes the
activation function—commonly the Rectified Linear
Unit (ReLU) defined as ¢(z) = max(0,z)—and § € R®
represents the model’s predicted class probabilities.

The Softmax function ensures that the output values
are interpretable as probabilities

yi:%, fori=1,...,C. 2)

j=1 exp(z;)

The learning objective is to minimize a loss function

that quantifies the discrepancy between the predicted

and true class labels. For multiclass problems, the cat-
egorical cross-entropy loss is commonly used

C
Lcg =—Y yilog(1i), 3)
i=1
where y; € {0,1} is the one-hot encoded ground truth
label, and y; € [0,1] is the predicted probability for

class i.

The model parameters ® = {W(!), b} 1 are opti-
mized by computing gradients of the loss function with
respect to each parameter using backpropagation and
updating them via an optimization algorithm such as
Stochastic Gradient Descent (SGD) or Adam [15].

One significant challenge in real-world classification
is the class imbalance problem, where certain classes
are underrepresented in the training data. This leads
to biased decision boundaries and poor recall on mi-
nority classes. In such cases, algorithm-level techniques
like cost-sensitive learning, or data-level approaches
such as resampling are used. Among the most ef-
fective data-level methods is the Synthetic Minority
Over-sampling Technique (SMOTE) [16], which gen-
erates synthetic examples of minority class instances
by interpolating between neighboring samples in the
feature space.

In multiclass classification, SMOTE can be extended
to address multiple minority classes by independently
resampling each underrepresented category to achieve
near-balanced class distributions. This approach pro-
vides more uniform learning signals across all classes,
thereby enhancing the model’s ability to recognize rare
patterns during inference.

4 METHODOLOGICAL FRAMEWORK

4.1 Overview of the EyeTrackDL Workflow

The proposed EyeTrackDL framework is structured
into four major components:

1) Data Preparation
2) Saccade Detection and Labeling
3) Data Engineering
4) Model Training and Validation

Each processing stage converts raw eye-head im-
pulse signals into structured classification inputs. The
pipeline begins by applying a fourth-order Butterworth
low-pass filter to raw VvHIT recordings, followed by
differentiation to compute both eye and head velocities.

Saccadic events are identified when eye velocity sur-
passes a 30°/s threshold and duration falls within
the 10-80 ms range. These detected segments are then
classified according to their head velocity at onset and
encoded as feature vectors.

To mitigate class imbalance and enhance model train-
ing, we implement a streamlined SMOTE approach on
the real dataset while supplementing it with synthetic
signals generated from a parameterized VOR model.
The resulting combined dataset trains the proposed
MLP classifier, with performance assessed via K-fold
cross-validation. An overview of the entire pipeline is
provided in Figure 1.

4.2 Data Preparation

This study utilized two distinct datasets: (1) a clinical
dataset comprising 760 eye-head movement recordings
acquired from healthy subjects using the ICS Impulse
system, and (2) a synthetic dataset containing 34,000
signals generated from a kinematic VOR model.

Each data file included three time-series channels:
timestamp, eye position, and head position. We pro-
cessed 599 real signal files through a standardized pre-
processing pipeline. To attenuate high-frequency noise,
all signals underwent fourth-order Butterworth low-
pass filtering with a 20 Hz cutoff frequency.

Following filtration, we computed eye and head ve-
locities using numerical differentiation based on the
mean sampling interval:

x(t+ At) — x(t)
t) = ——————=. 4
o) N @
This preprocessing stage was essential for maintain-
ing key kinematic features (e.g., peak velocity and
temporal resolution) crucial for saccade detection while
effectively suppressing measurement noise.

4.3 Saccade Detection and Labeling

Following preprocessing, we analyzed eye and head
velocity profiles to identify saccadic events using veloc-
ity thresholding. Detection criteria required eye velocity
to exceed 30°/s for durations between 10-80 ms. Each
detected event was then classified based on its concur-
rent head velocity:
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Figure 1. The proposed EyeTrackDL framework automates saccade classification through a four-stage workflow: data preparation, saccade
detection and labeling, data engineering, and model training and validation. Both real and simulated vHIT signals are processed to detect
saccadic events, extract key temporal features, and train a multilayer perceptron (MLP) classifier with enhanced generalizability.

o If the head velocity at the end of the event exceeded
150 deg/s, it was labeled as a covert saccade.

o If the head velocity was less than or equal to
150 deg/s, the event was labeled as an overt saccade.

o If no saccade was detected, the signal was labeled
as no saccade.

Each detected event was encoded as a feature vector
comprising saccade onset time and duration. These ex-
tracted features served as inputs for model training and
evaluation. The complete detection and classification
pipeline is formally described in Algorithm 1.

4.4 Data Engineering

In this section, each identified event was converted
into a fixed-length feature vector. For each event
(including non-saccade), the following two features
were extracted:

e x1: Onset time of the saccade (in seconds)

e X»: Duration of the saccade (in seconds)

These vectors formed the input dataset used in model
training. However, a significant class imbalance was

observed among the three classes (non-saccade, covert,
overt). To mitigate this issue, the Synthetic Minority
Oversampling Technique (SMOTE) was applied.

In SMOTE, new synthetic samples are generated
for minority classes by interpolating between existing
samples and their neighbors. Given a minority class
sample x; and one of its nearest neighbors xp,, a new
point is generated as follows

©)

where 6 ~ U(0,1) is a random number sampled from
the uniform distribution.

This interpolation is repeated until the number of
synthetic samples matches the majority class, resulting
in a balanced dataset suitable for training. The bal-
anced dataset was subsequently used in K-Fold cross-
validation during model evaluation.

Xnew = Xj +0 - (xrm - xi)r

4.5 Model Architecture and Training Procedure

The classification model employed in this study is a
fully connected MLP. Its structure consists of:
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Algorithm 1 Saccade Detection and Labeling Algorithm

Require: Eye velocity Ve,.[t|, Head velocity Vjq(t],
Time vector T|[¢]
Require: Thresholds: veye = 30 deg/s, Upeuq
150 deg/s, d,i, = 10 ms, dyyax = 80 ms
Ensure: Set of saccades with labels and features
1: Initialize empty list Saccades < |]
2041
3: while i < length(V¢,) do

4 if [Veye[i]| > veye then

5: start_time <— T[i]

6: duration < 0

7: while |Veye[i]| > veye and i < length(V,y,) do

8: duration < duration + At

9: i+—i+1

10: end while

11: if d,;;, < duration < dp,, then

12: if |Vieaali — 1]| > Upeqaq then

13: label < Covert

14: else

15: label < Overt

16: end if

17: Append (start_time,duration, label) to
Saccades

18: end if

19: else

20: i+—i+1

21: end if

22: end while

23: if Saccades is empty then

24: Append (0,0, NoSaccade) to Saccades
25: end if

26: return Saccades

e An input layer with 2 neurons (representing onset
time and duration)

o Two hidden layers with 20 and 10 neurons respec-
tively, each using the ReLU activation function

o A softmax output layer with 3 neurons (for the
classes: non-saccade, covert, overt)

This intentionally lightweight architecture was se-
lected to prioritize low latency, ease of deployment
in clinical settings, and interpretability. While modern
architectures such as CNNs or LSTMs may offer higher
representational capacity, our objective was to evaluate
whether a simple model could achieve clinically mean-
ingful performance using minimal, robust features.

In low-data regimes, complex architectures are also
prone to overfitting, especially when training data is
noisy or imbalanced. Thus, we chose to begin with a
compact MLP baseline before introducing additional
model complexity in future work.

We systematically evaluated cross-validation config-
urations using K-fold cross-validation with K ranging
from 2 to 10. For each K value, the dataset was parti-
tioned into K equal folds, with the model trained on
K —1 folds and validated on the remaining fold.

The choice of varying K from 2 to 10 allows us to
assess performance stability across different data splits,

Input Layer

Hidden Layer

Qutput Layer

Figure 2. Architecture of the proposed MLP classifier: two input
features, two hidden layers (20 and 10 neurons), and a softmax output
layer for three-class prediction.

from minimal training data (e.g., K = 2) to finer-grained
validation (K = 10). This approach also helps identify a
trade-off point where generalization and training cost
are optimally balanced.

Classification metrics (accuracy, sensitivity, and speci-
ficity) were computed per fold and averaged across all
folds. The optimal K* was determined by balancing
classification performance against computational effi-
ciency. The model architecture is presented in Figure 2.

5 EXPERIMENTAL SETUP

5.1 Experimental Environment

All experiments were performed in MATLAB
R2020b, utilizing the built-in patternnet func-
tion for model training. The complete processing
pipeline—including signal preprocessing, model train-
ing, and performance evaluation—was implemented
natively in MATLAB. Detailed hardware and software
specifications are provided in Table II.

5.2 Dataset Description

Two datasets were utilized in this study:

o Clinical dataset: Consisted of 760 eye-head move-
ment recordings obtained from healthy subjects
using the ICS Impulse system. Each recording
contained three time-series variables (timestamp,
eye position, and head position) stored in plain-
text format.

o Synthetic dataset: Comprised 34,000 simulated
signals generated from a kinematic VOR model.
The model adjusted key parameters (ampli-
tude, velocity, and latency) to reproduce diverse
saccadic dynamics.

All signals underwent temporal and amplitude nor-
malization. The synthetic data served dual purposes:
addressing class imbalance through dataset balancing
and enhancing model generalizability via structured
augmentation. Each saccadic event was encoded as a 2D
feature vector containing



N. K. Ha et al.: EyeTrackDL: A Robust Deep Learning Framework for Saccade Detection via Simulated Data Augmentation 77

Table II
HARDWARE CONFIGURATION OF THE EXPERIMENTAL SYSTEM

Component | Specification

Processor

AMD Ryzen 9 9900X, 12 cores / 24 threads, 4.4-5.6 GHz

RAM 32 GB DDRS5, 5600 MHz

Storage 1 TB SSD, PCle Gen 4 x8
Software MATLAB R2020b
X = [x1,x0], (6)

where xq is the onset time and x, is the duration of
the saccade.

All clinical recordings were fully anonymized prior
to analysis, with no personally identifiable information
retained. Data collection followed institutional ethi-
cal guidelines and complied with applicable data pri-
vacy regulations. No patient intervention or identifying
metadata was involved in this retrospective analysis.

5.3 Evaluation Metrics

Model performance was assessed using three stan-
dard classification metrics: accuracy, sensitivity (recall),
and specificity. These metrics were calculated per class
and averaged across all cross-validation folds.

e Accuracy: The proportion of correctly classified

samples relative to the total sample size

 Sensitivity (Recall): The true positive rate for a

given class

« Specificity: The true negative rate for a given class

Mathematically, the metrics are defined as:

Accuracy = TP+ TN (7)
Y " TP+TIN+FP+EN’
e TP;
Sensitivity, = m, (8)
e TN;
SpeCIfICItyl- = m, (9)

where TP, TN, FP, and FN denote the number of
true positives, true negatives, false positives, and false
negatives respectively for class i.

6 RESULTS AND Di1scuUssiON

6.1 Impact of Data Augmentation via SMOTE

Class imbalance significantly degrades classifier per-
formance. We addressed this by implementing the
SMOTE, which creates synthetic minority-class samples
through linear interpolation between nearest neighbors
in feature space.

To assess SMOTE’s effectiveness, we compared two
training regimes: (1) using real data only, and (2) using
real data augmented with SMOTE-generated samples.
Table III presents the resulting classification accuracies
across fold configurations K € {2,...,10}.

The baseline model (trained exclusively on real
data) achieved 80.34% average accuracy, whereas the

SMOTE-augmented version attained 96.54% - a 16.2
percentage point improvement. This performance gain
remained consistent across all fold configurations,
demonstrating that SMOTE-based augmentation effec-
tively expands the training distribution and substan-
tially improves model generalizability, particularly for
class-imbalanced and data-scarce scenarios.

However, it is important to note the significant per-
formance gap between synthetic (96.5%) and real clini-
cal data (83%), which may indicate potential overfitting
to the synthetic distribution. This discrepancy suggests
that while SMOTE effectively increases the training
pool, the synthetic samples may not fully capture the
variability and noise characteristics of real-world data.
To mitigate this, future work could explore domain
adaptation techniques, adversarial training strategies,
or hybrid datasets that blend simulated and empirically
collected examples to better align feature distributions.

6.2 Performance Analysis Across Classes and
Configurations

We evaluated model performance both at the class
level and across all cross-validation configurations.
Table IV provides complete sensitivity, specificity, and
training time metrics for both real and synthetic
datasets across K-fold values (K = 2-10).

The model showed particularly robust performance
for non-saccade classification across all configurations.
While overt saccade detection maintained consistently
high accuracy, sensitivity for covert saccades improved
substantially with synthetic data augmentation. Com-
putational time increased linearly with fold count K,
as expected.

We further observed that the model was trained us-
ing only two input features (onset time and duration),
which, while computationally efficient, may constrain
its ability to distinguish subtle differences between
saccade types. Incorporating additional temporal or
kinematic features—such as amplitude, peak velocity,
or curvature—may improve discriminative capacity,
particularly for borderline or ambiguous cases. This
represents a promising direction for future work.

6.3 Error Analysis and Observations

Although the model
performance, error analysis
important patterns:

achieved strong overall
identified  several

o Type II errors predominantly affected covert sac-
cades, which showed the lowest sensitivity (62.6%)
in the real dataset. These errors likely stem
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Table III

CLASSIFICATION ACCURACY (%) BEFORE AND AFTER SMOTE AUGMENTATION
K-Fold | Accuracy (Real Data) | Accuracy (SMOTE-Augmented)

2 62.20 87.63

3 81.94 97.64

4 82.75 97.66

5 82.79 97.65

6 82.93 97.58

7 82.60 97.72

8 82.40 97.72

9 83.01 97.65

10 82.46 97.58
Mean 80.34 96.54

Table IV
DETATLED PERFORMANCE METRICS PER CLASS AND CONFIGURATION (%)

Source K | Accuracy | Sens (Non) | Spec (Non) | Sens (Covert) | Spec (Covert) | Sens (Overt) | Spec (Overt) | Time (s)
2 62.20 100.00 100.00 64.30 71.80 61.70 75.20 160.0
3 81.94 100.00 100.00 65.56 91.68 83.23 82.78 182.3
4 82.75 100.00 100.00 66.29 90.99 81.99 83.14 203.2
5 82.79 100.00 100.00 66.83 91.32 82.72 83.41 218.6
Real 6 82.93 100.00 99.93 66.66 91.09 82.20 83.39 2384
7 82.60 100.00 100.00 64.63 91.58 83.17 82.34 287.4
8 82.40 100.00 100.00 64.76 91.25 82.50 82.37 294.6
9 83.01 100.00 100.00 66.35 91.33 82.66 83.19 311.5
10 82.46 100.00 100.00 64.34 91.54 83.06 82.16 321.8
2 87.63 100.00 100.00 88.65 87.12 84.25 89.32 160.4
3 97.64 100.00 100.00 98.88 97.02 94.04 99.44 182.0
4 97.66 100.00 100.00 99.01 96.99 93.99 99.05 204.1
5 97.65 100.00 100.00 99.01 96.98 93.96 99.50 217.6
Synthetic | 6 97.58 100.00 100.00 98.80 96.68 93.96 99.40 2374
7 97.72 100.00 100.00 98.99 97.09 94.18 99.50 288.1
8 97.72 100.00 100.00 98.96 97.09 94.19 99.48 292.4
9 97.65 100.00 100.00 98.86 97.05 94.11 99.43 3105
10 97.58 100.00 100.00 98.88 96.92 93.85 99.44 320.0

from: (1) low-amplitude signals, (2) sensor artifacts
(e.g., goggle slippage), and (3) labeling ambiguity
near the 150°/s head velocity threshold.

e Type I errors occurred most frequently in overt
saccade classification, typically when high-velocity
events failed to meet duration thresholds.

 Confusion matrix analysis revealed that most mis-
classifications involved covert-overt confusion, in-
dicating the need for additional discriminative fea-
tures beyond onset time and duration.

o We also examined a subset of misclassified covert
saccade instances. In many cases, the signal was
embedded in noise or exhibited partial suppres-
sion, complicating detection. A visual inspec-
tion of representative failure cases confirmed
that these signals lack sharp transitions, making
them difficult to identify even by human anno-
tators. A deeper integration of signal morphol-
ogy or frequency-based analysis may help mitigate
such errors.

Despite the simplicity of the MLP architecture, its
training speed and convergence stability were consis-
tent across folds. Compared to more complex architec-
tures like CNNs or LSTMs, the MLP’s low computa-
tional cost makes it attractive for real-time or embedded

applications. Nonetheless, future work should include
direct benchmarking against these models to contextu-
alize trade-offs in accuracy versus efficiency.
Performance stability peaked within the K € [5,7]
fold range, representing an optimal trade-off between
computational cost and generalization capability.

7 CONCLUSION

This study introduces an MLP-based deep learning
framework for saccade detection and classification in
VHIT recordings. The proposed system’s key innova-
tion lies in its dual-mode operation, processing both
clinical recordings and synthetic signals generated from
a kinematic VOR model. This simulation approach
effectively mitigates class imbalance while expanding
the training distribution.

Through comprehensive K-fold cross-validation
(K € [2,10]), the augmented model achieved 96.54%
mean accuracy with consistently high sensitivity and
specificity across all classes. These findings establish
simulated data as a clinically viable alternative to
real recordings, especially valuable for resource-
limited settings.
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While demonstrating strong overall performance, er-
ror analysis revealed persistent challenges in covert
saccade detection due to their low-amplitude sig-
natures. Future work will explore temporal fea-
ture integration and hybrid CNN-LSTM architec-
tures to better model the spatiotemporal dynamics of
vestibulo-ocular responses.
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