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Abstract– Fine-grained sleep posture recognition is essential for the non-invasive management of conditions such as
gastroesophageal reflux disease (GERD) and obstructive sleep apnea (OSA). Traditional systems typically recognize only
a limited set of coarse sleep positions, thereby restricting their clinical effectiveness in real-world scenarios. This study
presents HyPoNet, a lightweight deep learning model designed to classify twelve distinct sleep postures using data from a
single wearable sensor system. The proposed hardware platform consists of a tri-axial accelerometer (ADXL345) positioned
on the abdomen, interfaced with a low-power microcontroller unit (ESP32) for real-time signal acquisition and wireless
data transmission. Acceleration signals along the x, y, and z axes were collected from ten healthy volunteers performing
twelve predefined sleep positions under controlled conditions. The collected data were segmented using a sliding window
method, and a subject-independent evaluation strategy was applied: data from eight volunteers were used for training and
validation (in an 80:20 split), while data from the remaining two volunteers were reserved for testing.
HyPoNet uses a hybrid neural network architecture that combines bidirectional long short-term memory (BiLSTM) units to
capture temporal relationships in acceleration data with one-dimensional convolutional layers for spatial pattern extraction.
The system outperformed benchmark models like CNN, GRU, and Transformer variants, achieving an average accuracy
of 97.29% and an F1-score of 90.72%. HyPoNet is a promising method for embedded applications in sleep posture monitoring
in both home and clinical settings because of its low computational requirements and good classification performance.
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1 Introduction

In recent years, wearable technologies have become
increasingly vital to the advancement of smart health-
care [1, 2]. These compact, body-worn devices enable
real-time, continuous monitoring of physiological sig-
nals and human behaviors, offering a practical and scal-
able solution for both clinical applications and home-
based health management. Depending on their design,
wearable systems can incorporate various types of sen-
sors—such as photoplethysmography (PPG), electro-
cardiography (ECG) [3], gyroscopes, and accelerom-
eters—to capture meaningful data related to diverse
health conditions [4].

Among these, the accelerometer has emerged as
one of the most widely used sensors due to its low
cost, small size, energy efficiency, and robustness [5–9].
Initially applied to physical activity tracking and fall
detection, accelerometers are now increasingly adopted
in sleep research, especially for monitoring and classi-
fying sleep posture. Sleep posture not only influences
sleep quality but also plays a critical role in managing
various health conditions.

A promising application area is positional ther-
apy—a non-pharmacological treatment approach that
encourages or enforces specific sleep orientations
to alleviate symptoms [10]. For instance, avoiding
the supine position significantly reduces the apnea-
hypopnea index (AHI) in OSA patients [11, 12], while
sleeping in a left lateral posture or elevating the upper
body may reduce GERD symptoms [13]. The ability to
monitor and guide sleep posture in real-time is par-
ticularly relevant for young adults, who face growing
health challenges related to stress, poor sleep hygiene,
and sedentary lifestyles [14, 15].

Accelerometer-based wearable devices provide an
ideal platform for implementing positional therapy in
everyday environments. Their continuous tracking ca-
pabilities enable not only long-term retrospective anal-
ysis but also real-time interventions—such as vibra-
tion alerts to correct harmful postures during sleep.
Additionally, the longitudinal data captured by these
systems can support clinical assessments and inform
personalized treatment strategies [6, 7].

However, many current wearable systems are lim-

1859-378X–2025-0302 © 2025 REV



H.-D. Vu et al.: HyPoNet: Fine-Grained Sleep Posture Recognition from a Single Abdominal Accelerometer 81

ited to recognizing only four coarse-grained pos-
tures: supine, prone, left lateral, and right lateral.
This basic classification fails to capture the nuance
of real-world sleep behavior, where individuals of-
ten adopt intermediate or transitional positions
(e.g., semi-supine, partial lateral turns). Studies have
shown that such subtle variations in posture can
influence the severity of symptoms in sleep-related
conditions [13, 15], reducing the clinical utility of over-
simplified classification schemes.

To address this limitation, we present a novel
wearable system that uses a single device with
one accelerometer for recognizing 12 distinct sleep
positions. These positions are designed as fine-grained
variations of the four canonical postures, capturing sub-
tle deviations such as slight body rotations or inclina-
tion angles. This richer representation allows for more
precise and clinically meaningful analysis of natural
sleep behavior without oversimplifying transitional or
borderline postures.

At the core of our system is HyPoNet (Hybrid
Position Network), a lightweight deep learning ar-
chitecture designed for efficient and accurate posture
classification. HyPoNet combines 1D - convolutional
neural networks (1D CNNs) [16] for spatial feature
extraction with bidirectional long short-term memory
(BiLSTM) layers [17] to capture both forward and back-
ward temporal dependencies in the accelerometer data.
This hybrid design enables the model to distinguish
subtle differences between similar postures that may
exhibit overlapping motion patterns.

Compared to existing models such as AnpoNet [18],
which was among the first to explore 12-class sleep
posture classification using a CNN-LSTM approach,
HyPoNet offers significant improvements. Notably, An-
poNet relies on a unidirectional LSTM, limiting its
temporal modeling capacity. In contrast, HyPoNet’s
BiLSTM allows for richer contextual understanding,
resulting in more robust and accurate classification.

The contributions of this paper are as follows:

• We develop the wearable system using a single tri-
axial accelerometer to perform fine-grained sleep
posture classification, recognizing 12 distinct ori-
entations as nuanced variants of the four main
sleep positions.

• We propose HyPoNet, a hybrid deep learning ar-
chitecture that combines CNNs and BiLSTM layers
to jointly capture spatial patterns and bidirectional
temporal dependencies in motion data.

• We conduct extensive experiments comparing Hy-
PoNet to traditional and deep learning baselines,
demonstrating its superior accuracy, robustness,
and generalizability across multiple users.

• We highlight the practical potential of our system
for long-term, at-home sleep monitoring and
real-time positional therapy, supporting broader
applications in personalized healthcare and
clinical research.

2 Material and Methods

2.1 Data Acquisition and Sleep Posture Annotation
To support the classification of diverse sleep pos-

tures, we developed a compact wearable sensing de-
vice (Figure 1), designed to be comfortably worn on
the abdomen during sleep. The device integrates an
ADXL345 tri-axial accelerometer for motion sensing,
managed by an ESP8266 microcontroller, and powered
by a rechargeable lithium-ion battery. All components
are enclosed in a lightweight, durable plastic housing
to ensure comfort and protection during prolonged use,
particularly overnight.

The hardware design reflects careful consideration of
trade-offs between functionality, energy efficiency, and
cost. The ADXL345 was selected over more complex
inertial measurement units (e.g., 6-axis or 9-axis IMUs)
due to its high sensitivity, low noise, and power-
efficient performance in static applications. These at-
tributes make it well-suited for capturing posture-
related changes without the additional drift or com-
plexity introduced by gyroscopes or magnetometers.
Likewise, the ESP8266 microcontroller offers a com-
pact and cost-effective solution with built-in Wi-Fi ca-
pabilities. While more powerful alternatives such as
the ESP32 provide additional features (e.g., dual-core
processing, Bluetooth), these are unnecessary for this
application and would compromise battery life. The
selected configuration allows the system to operate
reliably for 8–10 hours on a single charge—suitable for
overnight monitoring.

To enhance robustness and avoid data loss dur-
ing potential network disconnections, the device sup-
ports dual data logging: it streams real-time data via
Wi-Fi using UDP in JSON format and simultaneously
buffers the data locally to a microSD card. A dedicated
mobile application acts as the client interface, sup-
porting live posture monitoring, file management, and
session control.

The system was evaluated through a structured data
collection experiment involving ten healthy student
volunteers (5 male, 5 female), aged between 19 and 24
years. All volunteers were in stable physical condition
with no known musculoskeletal or neurological disor-
ders and had relatively uniform anthropometric charac-
teristics in terms of height and weight. Each volunteer
wore the device on the abdomen and was instructed to
lie on a flat mattress surface in a standardized set of
twelve static sleep postures.

Postures were determined from the orientation an-
gle of the abdomen within the transverse plane,
with the reference coordinate system defined so that
a right lateral body position corresponded to 0◦.
The 12 positions included the four canonical sleep
orientations—right lateral (0◦), supine (90◦), left lat-
eral (180◦), and prone (270◦)—along with eight in-
termediate variations spaced at 30◦ intervals: right-
up (30◦), up-right (60◦), up-left (120◦), left-up (150◦),
left-down (210◦), down-left (240◦), down-right (300◦),
and right-down (330◦). These finer-grained postures
represent realistic transitional or asymmetric positions
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Figure 1. Overview of the wearable device architecture. The illustration shows detailed components of the system, including the ADXL345
accelerometer, ESP8266 microcontroller, rechargeable battery, and microSD storage. It also depicts the data communication flow between
components and the wireless transmission of real-time sensor data to the mobile application via a locally hosted Wi-Fi network.

often adopted during natural sleep, which are not cap-
tured in conventional four-class classification systems.

Each volunteer remained in one posture for one
minute while the acceleration was recorded at a sam-
pling rate of 50Hz, resulting in 3,000 samples per
posture. Short rest periods between positions were
provided to minimize fatigue. The data were stored
using a file-naming convention encoding the volun-
teer ID and posture label. In total, 120 labeled samples
(10 volunteers × 12 postures) were collected, forming
a balanced and diverse dataset for training and evalu-
ating the proposed sleep posture classification model.

2.2 Data Pre-processing
To analyze body posture during sleep using mo-

tion data, acceleration signals along the three spa-
tial axes—x, y, and z—denoted as ax, ay, and az,
are collected from the wearable tri-axial accelerometer.
These signals capture both gravitational orientation
and motion-induced dynamics, providing discrimina-
tive features for sleep posture classification.

After data acquisition, a preprocessing pipeline is
employed to prepare the raw time-series signals for
model training. First, a subject-wise data partitioning
strategy is adopted to ensure that training, validation,
and testing sets contain data from distinct volunteers.
This setup enables an evaluation of the model’s gen-
eralization ability to unseen users, which is crucial for
practical deployment in real-world scenarios.

To prepare input samples, the continuous time-series
is divided into shorter, fixed-length segments using an
overlapping windowing method. Each window cap-
tures a short-duration snapshot of the user’s acceler-
ation data (ax, ay, az). Importantly, overlapping win-
dows are used, meaning consecutive segments partially
share data points. This overlapping technique serves
multiple purposes: it increases the number of training
samples, preserves the temporal continuity of signals,
and enhances the model’s ability to detect gradual tran-
sitions or boundary cases between postures. Without
overlap, subtle posture changes occurring near window

edges may be missed or truncated, reducing classifica-
tion accuracy.

The resulting segments form a structured dataset
comprising multivariate time-series windows, which
serve as input to the deep learning model. Each
window encodes local temporal and spatial pat-
terns that reflect the user’s orientation and poten-
tial micro-movements, forming the basis for robust
posture recognition.

2.3 Classification Module
This study introduces a novel hybrid deep learning

architecture named HyPoNet (Hybrid Posture Net-
work), which combines the strengths of Convolutional
Neural Networks (CNNs) and Bidirectional Long Short-
Term Memory (BiLSTM) networks, as detailed in Fig-
ure 2. The architecture is specifically designed for sleep
posture classification using triaxial accelerometer data.

HyPoNet starts with a one-dimensional Convolu-
tional layer that extracts local temporal patterns from
the input signal, followed by two BiLSTM blocks ar-
ranged in sequence. To improve stability during op-
timization and support better generalization, several
Batch Normalization (BN) operations are included
subsequent to major transformations, while MaxPool-
ing1D layers are inserted in between to gradually
downsample the temporal dimension. The learned rep-
resentation is then condensed through Global Average
Pooling, passed through a Dropout layer to mitigate
overfitting, and finally mapped to 12 sleep posture
categories using a fully connected (Dense) layer.

1D Convolutional Layer: The 1D CNN serves as the
initial feature extractor. It effectively captures localized
patterns in the time series, which are vital for identify-
ing characteristic short-term dynamics of body posture
transitions. The convolutional filters slide across the
temporal axis of the input, detecting low-level features
irrespective of their positions.

BiLSTM Layers: To model longer temporal de-
pendencies and bidirectional context, two stacked
BiLSTM layers are utilized. These layers analyze both
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Figure 2. The proposed HypoNet architecture takes preprocessed tri-axial acceleration signals as input and combines 1D Convolutional Neural
Networks (1D CNN) with Bidirectional Long Short-Term Memory (BiLSTM) layers to capture both spatial and temporal dependencies, enabling
accurate classification of 12 sleep positions.

past and future contexts within the sequence, allow-
ing the network to recognize position changes that
evolve over time - a crucial capability for sleep pos-
ture classification, where transitions can be gradual
and interdependent.

Batch Normalization [19] and Pooling: Each major
module is followed by a Batch Normalization layer,
which stabilizes and accelerates training by normal-
izing layer activations. This reduces internal covariate
shift and alleviates vanishing/exploding gradient is-
sues. MaxPooling layers are inserted between BiLSTM
blocks to reduce the sequence length and introduce a
form of time-scale invariance.

Global Pooling and Classification Head: The final
sequence output is globally averaged to produce a
compact representation of the time series. A Dropout
layer follows to mitigate overfitting. Finally, a dense
layer maps the features to class probabilities over the 12
sleep positions.

HyPoNet effectively leverages the local feature ex-
traction capability of 1D CNNs and the long-range
sequential modeling strength of BiLSTMs. The architec-
ture is designed to be lightweight (only ~21K trainable
parameters), enabling efficient deployment on edge
devices, while still achieving high accuracy and robust-
ness in sleep posture classification tasks.

3 Experiments

3.1 Comparison models
3.1.1 Models from Previous Studies:

Rawan et al. LSTM Model [9]
A recent study by Rawan et al. (2023) [9] explored the
use of Long Short-Term Memory Networks (LSTMs)
for sleep position classification. Their architecture uti-
lized an LSTM unit with a hidden dimension of 25,
specifically chosen to capture long-term dependencies
in the data. Following the LSTM layer, a fully connected

layer with an input dimension of 100 and an output
dimension of 12 (increased from the original 4) was im-
plemented. This final layer likely represents the number
of sleep positions the model was designed to classify.

The output from the fully connected layer was then
processed using a Log Softmax non-linearity function.
This function converts the model’s raw outputs into
probabilities for each sleep position class. The negative
log-likelihood loss, derived from these probabilities,
was employed as the optimization criterion during
training. This loss function measures the discrepancy
between the predicted and actual sleep positions, al-
lowing the Adam optimizer [20] to refine the model’s
weights and improve its classification accuracy.
AnpoNet [18]
Vu et al. introduced AnpoNet, a hybrid deep learn-
ing architecture designed for analyzing accelerometer
data in sleep posture recognition. The model integrates
one-dimensional convolutional layers to extract local
patterns, followed by batch normalization to enhance
training stability and generalization. Temporal depen-
dencies in the signal are captured through an LSTM
layer, enabling the model to learn sequential patterns
effectively. Specifically, the architecture includes a 1D
convolutional layer with a kernel size of 3, stride of 1,
and 8 output channels (80 parameters); a 1D batch
normalization layer with 8 channels (32 parameters);
an LSTM layer with 16 hidden units (1600 parameters);
a dropout layer for regularization; a flattening step;
and a fully connected layer with 12 output units (204
parameters). In total, the model comprises 1916 train-
able parameters, making it lightweight yet capable of
capturing both spatial and temporal characteristics in
sensor data.

3.1.2 Baseline Models:
1D CNN
The model includes two 1D-CNN layers (8 and 16
filters, k = 3), followed by flattening and a 2-layer
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MLP (16, 12 units). BN is applied after all Conv/FC
layers except the output, and Dropout (p = 0.4) is used
for regularization.

1D CNN + GRU
The architecture begins with a 1D-CNN (8 filters)
followed by BN, MaxPool, and GAP. The resulting
features are passed to a GRU layer for temporal
modeling, and a final Dense layer (12 units) performs
classification, enabling evaluation of the GRU’s role in
sequence representation.

Transformer [21]
The input data is processed through six transformer
encoder blocks, each with 4 attention heads and a
head dimension of 256. After flattening, the features
pass through a two-layer MLP with 128 and 64 units,
including dropout for regularization. The final output
layer uses softmax activation with 12 units to predict
sleep postures, leveraging self-attention mechanisms to
handle long sequences effectively.

3.2 Experimental designs

To ensure the model’s ability to generalize and avoid
overfitting, the proposed HypoNet architecture incor-
porates a variety of regularization techniques. These
include L1 and L2 weight penalties, along with Dropout
layers distributed throughout the network, which col-
lectively help stabilize learning and improve robustness
across volunteers.

An important part of this work was the optimization
of temporal segmentation for the input signals. Instead
of fixing the number of samples per segment, a time-
based sliding window strategy was employed. With a
sampling rate of 50 Hz, window durations between 0.5 s
and 4.0 s (25–200 samples) were systematically tested.
Exploring this wide range made it possible to analyze
the impact of window length on the model’s ability to
recognize and differentiate sleep postures—a factor that
has been understudied in earlier research, especially for
short and mid-length windows.

In addition, the study examined how different over-
lap ratios between successive windows affect perfor-
mance. Overlap levels of 20%, 40%, 60%, and 80% were
evaluated to analyze their impact on both accuracy and
temporal resolution. Larger overlaps, particularly in
combination with shorter windows, provide finer detail
and faster response, which are essential characteristics
for real-time sleep posture monitoring.

To assess performance in realistic scenarios, a subject-
wise cross-validation strategy was adopted. The dataset
from 10 participants was split so that records from 8
individuals (≈80%) were allocated to training and vali-
dation, while the remaining 2 (≈20%) were reserved for
testing only. From the training subset, 20% was further
set aside as a validation set for hyperparameter tuning
and early stopping.

HyPoNet Architecture. HyPoNet is a hybrid deep
learning model that integrates convolutional and recur-
rent layers to effectively capture both spatial patterns

and temporal dependencies in time-series acceleration
data. The model takes as input a preprocessed window
of tri-axial accelerometer data with shape (100, 3), cor-
responding to 2 seconds of signal sampled at 50 Hz.

The architecture as in Table I begins with a one-
dimensional convolutional layer (Conv1D) with 8 fil-
ters of size 3 and stride 1, producing an output of
shape 100 × 8. This layer is followed by a Batch Nor-
malization layer to stabilize learning.

To model temporal dependencies, a two-stage Bidi-
rectional Long Short-Term Memory (BiLSTM) network
is employed. The first BiLSTM layer outputs 100 × 32
features, which are normalized and downsampled us-
ing a MaxPooling1D layer with pool size 3. The second
BiLSTM layer expands the representation to 98 × 64,
followed by additional batch normalization and max
pooling operations, resulting in an output of 96 × 64.

To reduce dimensionality and focus on global tem-
poral features, a Global Average Pooling layer is ap-
plied, producing a 64-dimensional feature vector. A
Dropout [22] layer is then used to prevent overfitting,
and finally, a fully connected (Dense) layer maps the
output to 12 units, corresponding to the number of
sleep posture classes.

The total number of trainable parameters in HyPoNet
is 21,372, making it a compact yet expressive model
suitable for embedded and real-time applications.

3.3 Evaluation Metrics

To assess the performance of the proposed classifica-
tion models, this study adopts two primary evaluation
metrics: Accuracy and F1-score, which are standard in
multiclass classification tasks.

The Accuracy metric indicates the percentage of cor-
rectly predicted instances among the total number of
predictions and is calculated as follows

Accuracy =
Number of Correct Predictions

Total Number of Predictions
× 100%.

(1)
Although accuracy provides an overall performance

snapshot, it can be misleading in imbalanced datasets.
Therefore, the F1-score is also employed to account for
the balance between precision and recall, offering a more
reliable evaluation when class distributions vary

Precision =
TP

TP + FP
, Recall =

TP
TP + FN

, (2)

F1-score =
2 · Precision · Recall
Precision + Recall

. (3)

In these formulas, TP, FP, and FN represent the
number of true positives, false positives, and false
negatives, respectively.

To further interpret the model’s classification be-
havior, a confusion matrix is used to provide class-
wise prediction outcomes, revealing which classes are
commonly confused.

From a system-level perspective, computational effi-
ciency is evaluated in terms of:
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Table I
Layer-wise Configuration of HyPoNet, a Hybrid CNN-BiLSTM Model for Sleep Posture Classification.

Layer Kernel / Pool Output Dim Stride #Params

Input (100, 3) - - - 0

Conv1D 3 100 × 8 1 80

BatchNorm1D - 100 × 8 - 32

BiLSTM-1 - 100 × 32 - 3,200

BatchNorm1D - 100 × 32 - 128

MaxPooling1D 3 98 × 32 1 0

BiLSTM-2 - 98 × 64 - 16,640

BatchNorm1D - 98 × 64 - 256

MaxPooling1D 3 96 × 64 1 0

BatchNorm1D - 96 × 64 - 256

GlobalAvgPooling1D - 64 - 0

Dropout - 64 - 0

Dense (FC) - 12 - 780

Total Parameters 21,372

• FLOPS (floating-point operations per second): An
indicator of computational complexity.

• Memory usage (MB): Total RAM consumed
during inference.

4 Results

4.1 Classification Performance

Table II summarizes the performance of HyPoNet
compared with baseline and state-of-the-art models
on the test set. Reported metrics include mean accu-
racy and F1-score across all subjects, as well as com-
plexity measures such as parameter size, FLOPs, and
memory consumption.

The proposed HyPoNet achieved the highest perfor-
mance across both metrics, with an average accuracy
of 97.29% and an F1-score of 90.72%, while maintaining
a moderate model size of 21,372 parameters and mem-
ory footprint of only 152 kB. These results highlight
the model’s ability to balance classification accuracy
and computational efficiency, making it well-suited for
deployment on resource-constrained wearable systems.

Compared to a standard 1D CNN model, HyPoNet
significantly outperforms it in both accuracy (by 9.05
percentage points) and F1-score (by 10.38 percentage
points), despite having similar memory usage. While
the 1D CNN + GRU model achieved a competitive F1-
score of 90.52%, its performance was more variable, and
its accuracy remained lower than HyPoNet by over 5%.

In contrast, the Transformer-based model, despite its
large parameter size (140,168 parameters) and high
computational cost (5.41 MFLOPs), yielded substan-
tially lower accuracy and F1-score (57.23% and 45.48%,
respectively). This suggests that self-attention mecha-
nisms, while powerful, may not be optimal for this
specific task or data scale.

Classical models from the literature, including Rawan
et al.’s LSTM-based approach and AnpoNet, demon-

strated modest performance with lower computa-
tional requirements. However, both models underper-
formed compared to HyPoNet, with accuracy drops of
over 11% and 20%, respectively.

Overall, the results clearly demonstrate that HyPoNet
provides a compelling balance between classification
performance and computational cost, reinforcing its
suitability for real-time, embedded sleep posture recog-
nition applications.

4.2 Confusion matrix analysis
Figure 3.A presents the confusion matrix for the

sleep posture classification task using the proposed
model. The results demonstrate that the model achieves
outstanding classification performance across most
posture categories. Notably, eight out of the twelve
classes (D, DL, LD, LU, RD, RU, U, UL) are classified with
perfect accuracy (100%), indicating the model’s strong
ability to distinguish these postures. Other classes such
as DR and UR also achieve near-perfect performance,
with 99 correctly predicted instances and only one
misclassification each.

However, the model exhibits a noticeable drop in per-
formance for the LL class, with only 78% of instances
correctly predicted. A significant portion of the LL
samples (22%) are misclassified as LU, which may be
attributed to the subtle variations in body orientation
between these two postures, possibly leading to similar
signal patterns captured by the wearable sensors. A
smaller degree of confusion is also observed for the LR
class, where 5% of samples are misclassified as UR.

4.3 Training Processs
Figure 3.B illustrates the training and validation loss

and accuracy curves of HyPoNet across 300 training
epochs. The model demonstrates rapid convergence,
with both training and validation loss sharply decreas-
ing during the initial 50 epochs. After this phase, the
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Table II
Performance and Complexity Comparison of Evaluated Models on the Test Set

Model Accuracy (%) F1-Score (%) #Params #FLOPS (M) #Memory(kB)

HyPoNet 97.29 ± 1.29 90.72 ± 5.19 21,372 1.9530 152

1D CNN 88.24 ± 10.97 80.34 ± 18.33 25,436 0.1410 135

1D CNN + GRU 92.15 ± 7.18 90.52 ± 8.68 16,700 1.4633 134

Transformer 57.23 ± 13.77 45.48 ± 8.24 140,168 5.4096 740

Rawan et al. (LSTM) [9] 85.50 ± 13.64 82.90 ± 16.12 3,212 0.2806 31

AnpoNet [18] 77.00 ± 18.02 71.86 ± 21.86 1,916 0.1603 34

Figure 3. A. Confusion matrices of HypoNet (sleeping position labels: LR – Lateral Right, RU – Right Up, UR – Up Right, U – Supine, UL –
Up Left, LU – Left Up, L – Lateral Left, LD – Left Down, DL – Down Left, D – Prone, DR – Down Right, RD – Right Down); B. Training loss
and accuracy curves of HypoNet; C. Overlap ratio analysis; D. Impact of varying window sizes (in seconds) on performance.

losses continue to decrease gradually and remain sta-
ble, suggesting that HyPoNet has effectively captured
the underlying temporal and spatial features required
for sleep posture classification.

The training accuracy quickly rises and stabilizes
above 95% within the first 40 epochs. Meanwhile,
the validation accuracy also increases steadily and
stabilizes around 90–92% with minimal fluctuations
throughout the training process. The small and con-
sistent gap between training and validation accuracy
indicates good generalization performance without sig-
nificant overfitting. Furthermore, the validation loss
remains low in the later epochs, further confirming the
robustness and stability of the model.

Overall, these results confirm that HyPoNet achieves
effective learning and generalization, with strong per-
formance on both the training and unseen validation
data. The learning curves support the suitability of
the proposed hybrid CNN-BiLSTM architecture for the
sleep posture classification task.

4.4 Effect of Temporal Segmentation Parameters

Figure 3.C and Figure 3.D illustrate the impact of
two key temporal segmentation parameters—window
overlap ratio and window size—on the classification
performance of the proposed HyPoNet model.

As shown in Figure 3.C, increasing the overlap ra-
tio between consecutive windows leads to a notice-
able improvement in classification accuracy. This trend
suggests that overlapping windows provide beneficial
temporal continuity, enhancing the model’s ability to
capture dynamic transitions in sleep postures. However,
performance gains tend to saturate or slightly decline
when the overlap ratio becomes excessively high, pos-
sibly due to the introduction of redundant information
and reduced data diversity. Conversely, using non-
overlapping windows results in the lowest accuracy,
emphasizing the importance of temporal overlap in
sequential data modeling.

Figure 3.D shows that window size also plays a
critical role in model performance. The results exhibit
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a non-monotonic relationship: while moderate window
sizes yield high accuracy, both very short and very long
windows degrade performance. Short windows may
lack sufficient temporal context for accurate posture
recognition, while long windows might include noisy
transitions or irrelevant information that negatively
affect classification.

Overall, the findings emphasize that segmentation
settings play a critical role in determining model ef-
fectiveness. The highest classification accuracy was ob-
tained with a window length of 1.5 s combined with
an overlap of 40%, suggesting that this configuration
achieves an effective balance among temporal granu-
larity, contextual coverage, and computational cost.

4.5 Ablation Study
Varying the number of convolutional filters as in

Figure 4.A revealed distinct trends in the trade-off
between accuracy and F1 score. With 8 filters, the model
achieved its highest accuracy (97.3%) and a competi-
tive F1 score of 90.7%, suggesting that a smaller filter
set was sufficient to capture the discriminative features
in this task. Increasing the number of filters to 16
slightly reduced accuracy to 94.6% but improved the F1
score to 93.0%, indicating a more balanced performance
across classes.

However, further increasing the number of filters
to 32 resulted in a drop in F1 score to 86.0% while
maintaining accuracy at 94.3%, possibly due to over-
fitting or redundancy in learned feature maps. At 64
filters, the F1 score recovered to 93.5% and accuracy
slightly improved to 95.0%, but still did not surpass
the best result observed at 8 filters. These results imply
that, for this specific task, a relatively small number of
filters can achieve strong generalization while avoiding
the computational overhead of larger configurations.

The ablation study on different dropout rates as in
Figure 4.B revealed a non-linear relationship between
regularization strength and model performance. At a
low dropout rate of 0.2, the model achieved an ac-
curacy of 79.3% and an F1 score of 68.3%, indicating
insufficient regularization and potential overfitting to
spurious features. Increasing the dropout rate to 0.4 led
to a substantial improvement, with accuracy peaking
at 97.3% and the F1 score rising to 90.7%. This result
suggests that a moderate level of dropout provides an
effective balance between retaining important feature
representations and mitigating overfitting.

Increasing the dropout rate to 0.6 led to a sub-
stantial decline in performance, with accuracy reduced
to 82.7% and the F1-score to 79.9%. At the maximum
tested rate of 0.8, the model showed partial recovery,
reaching 90.0% accuracy and an F1-score of 82.9%, yet
still underperforming compared to the optimal setting
of 0.4. The reduced effectiveness at higher dropout
values can be attributed to the excessive removal of
informative features, limiting the model’s capacity to
learn discriminative representations. These observa-
tions suggest that a dropout probability of 0.4 provides
the best trade-off between generalization and predictive
strength for this task.

5 Discussion

5.1 Clinical Application

The HyPoNet-based wearable platform carries sig-
nificant clinical relevance for non-invasive manage-
ment of sleep-related disorders. Disorders such as OSA
and GERD are strongly influenced by body posture
during sleep—for instance, supine positioning can ag-
gravate OSA, while GERD symptoms may worsen in
the right lateral posture. Positional therapy, which pro-
motes or maintains favorable sleep orientations, has
proven effective in symptom reduction without the
need for medication.

Traditional diagnostic tools like polysomnogra-
phy (PSG), while comprehensive, are limited by short
monitoring durations and coarse posture categoriza-
tion. In contrast, the proposed system enables con-
tinuous, fine-grained monitoring of 12 distinct body
orientations in natural sleeping environments over ex-
tended periods. This level of granularity allows for
precise identification of posture-induced symptom trig-
gers, making it possible to deliver timely feedback or
interventions such as vibrotactile cues to encourage
posture correction.

Furthermore, the system’s ability to detect intermedi-
ate postures enhances diagnostic accuracy and therapy
personalization. For instance, a patient frequently ro-
tating between left and supine positions can be more
accurately tracked and guided, reducing the risk of
undetected harmful postures. The lightweight design
and low-power consumption of the wearable make it
suitable for long-term use in outpatient settings, while
the high classification accuracy of HyPoNet ensures
reliability even in the presence of subtle variations in
body orientation.

In clinical practice, such a system can serve as a
valuable adjunct to PSG by providing longitudinal,
real-world data on sleep posture behavior. This infor-
mation can aid clinicians in evaluating therapy ad-
herence, identifying posture-related symptom patterns,
and adjusting treatment plans accordingly. Ultimately,
the integration of HyPoNet-based posture monitoring
holds promise for advancing personalized, preventive
care strategies for sleep-related disorders.

5.2 Limitations and Future Work

Despite its promising performance, HyPoNet re-
mains an early-stage system that requires further de-
velopment for deployment in practical and clinical
settings. The current validation was performed under
controlled laboratory conditions with healthy volun-
teers, focusing on short-term recordings. Such a setup,
while useful for initial benchmarking, does not capture
the full variability of real-world sleep behaviors influ-
enced by factors such as different bedding, nighttime
disturbances, or underlying health conditions. Broader
testing—including overnight monitoring and trials in-
volving individuals with sleep-related disorders—will
be essential to evaluate generalizability and robustness.
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Figure 4. A. Accuracy and F1 Score vs. Number of Filters of HypoNet; B. Accuracy and F1 Score vs. Dropout Rate.;

From a technical standpoint, HyPoNet currently re-
lies solely on acceleration data, which can limit its abil-
ity to distinguish between subtle variations in posture,
especially among similar angular orientations. While
this single-sensor design improves comfort and weara-
bility, future versions could benefit from the integration
of gyroscope data to enhance motion characterization.
Additional sensing modalities, such as respiratory or
cardiac signals, may also support expanded applica-
tions beyond posture classification.

Although the number of volunteers in this study is
relatively small, the use of sliding-window segmenta-
tion (window size 100 samples, 40% overlap) greatly
increases the number of training instances, resulting in
thousands of labeled windows per class. This ensures
that the deep learning model is trained on a sufficiently
large dataset to achieve strong performance without
heavy reliance on augmentation. Nevertheless, future
work will explore standard data augmentation strate-
gies—such as noise injection to simulate sensor varia-
tions, time warping for different movement speeds, am-
plitude scaling to reflect sensor sensitivity changes, and
rotational transformations to mimic variations in sensor
orientation—which can further improve robustness and
reduce potential overfitting to a specific volunteer pool.

Furthermore, while the present work has focused
on improving classification accuracy as a founda-
tional step, practical real-time deployment on resource-
constrained IoT edge devices will require addressing
additional factors beyond memory and FLOPs, includ-
ing power consumption over extended operation, wire-
less data transmission reliability, and long-term hard-
ware stability. These engineering considerations will be
explored in future development stages when moving
from proof-of-concept to large-scale field deployment.

Finally, as sleep monitoring involves the collec-
tion of sensitive physiological data, future clinical ap-
plications of HyPoNet will need to incorporate ro-
bust privacy and security measures. These include
compliance with relevant data protection regulations
(e.g., HIPAA, GDPR), secure storage and encrypted
transmission of data, clear informed consent proce-
dures, and institutional ethical oversight to ensure re-
sponsible use of collected information.

6 Conclusion

This work presents HyPoNet, a compact deep learning
framework designed for detailed classification of twelve
distinct sleep postures using signals from a single
abdominal tri-axial accelerometer. In contrast to con-
ventional methods that restrict analysis to four broad
orientations, HyPoNet can also recognize intermediate
postural angles, offering finer granularity that is par-
ticularly valuable for positional therapies in disorders
such as gastroesophageal reflux disease (GERD) and
obstructive sleep apnea (OSA).

The proposed architecture integrates 1D convolu-
tional layers for local feature extraction with a bidi-
rectional LSTM network that captures temporal de-
pendencies in both directions. This hybrid design
enables the model to effectively differentiate be-
tween subtle variations in body orientation. Evalu-
ated under a subject-independent protocol, HyPoNet
achieved an average accuracy of 97.29% ± 1.29 and
an F1-score of 90.72% ± 5.19, outperforming several
baseline models while maintaining low computational
and memory overhead.

Despite these promising results, several limitations
warrant further investigation. The current evaluation
was confined to controlled laboratory settings and
short-duration recordings from healthy subjects, which
may not fully represent the variability of natural sleep
conditions. Additionally, the reliance solely on ac-
celerometer data may impede the model’s ability to
distinguish between closely adjacent postures.

Future work will focus on several key aspects: (i)
extending the validation to home-based and overnight
recordings, including trials with clinical populations
suffering from sleep disorders; (ii) integrating addi-
tional sensing modalities, such as gyroscopes, to fur-
ther enhance motion characterization and classification
accuracy; and (iii) developing real-time feedback mech-
anisms to actively assist users in correcting detrimental
sleep postures. The advancement of HyPoNet holds
significant potential for non-invasive, continuous sleep
monitoring and personalized therapeutic interventions,
ultimately contributing to improved clinical outcomes
in the management of sleep-related disorders.
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