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Abstract— While deep-based super-resolution (SR) has achieved remarkable progress, state-of-the-art models such as EDSR
often rely solely on pixel-level information, resulting in overly smooth outputs that often fail to reconstruct the fine-grained
edge details essential for downstream machine vision tasks. To address this challenge, we propose the Edge-Enhanced
Deep Super-Resolution (E2DSR) model, a task-aware framework that leverages explicit edge guidance to enhance the
reconstruction process with high-frequency edge information. E2DSR integrates a novel Edge Feature Enhancement (EFE)
Block into a deep residual architecture, which learns to extract and fuse salient edge features from the low-resolution input.
We demonstrate the effectiveness of our approach within a gesture recognition, where E2DSR significantly enhances input
quality for a state-of-the-art YOLOvV10 detector. Experimental results show that our method substantially outperforms the
original EDSR and other approaches, increasing the mean average precision (mAP) from 0.776 to 0.822 on average across
four representative gesture action types. Our work demonstrates that explicit edge guidance is a crucial component for

developing super-resolution models that excel in practical machine vision applications.

Keywords— Edge-guided super-resolution, edge extraction, residual network, super-resolution.

1 INTRODUCTION

Image super-resolution (SR) has long been a critical
task in low-level computer vision, aiming to recon-
struct high-resolution (HR) images from their low-
resolution (LR) counterparts. This problem has sig-
nificant applications across various domains, includ-
ing medical imaging [1], digital forensics [2], surveil-
lance [3], and machine vision [4, 5]. However, SR is
inherently ill-posed, as a single LR image can corre-
spond to multiple HR versions, making the recovery
of lost high-frequency details a significant challenge.
To achieve SR images, extensive research has been con-
ducted, primarily along two main approaches: model-
based and learning-based methods. The model-based
approach relies on mathematical formulations and op-
timization techniques, incorporating prior knowledge,
such as image smoothness, sparsity, and edge continu-
ity, into the reconstruction process.

Traditional interpolation-based methods, such as
Bicubic [6] and Lanczos [7, 8], regularization-based op-
timization [9, 10], and sparse coding [11, 12], fail to re-
cover fine details, especially edges, resulting in blurred
reconstructions. With the advent of deep learning, con-
volutional neural networks (CNNs) [13, 14] have revo-
lutionized the field, leading to a variety of architectures
that have advanced reconstruction quality. Early models
like SRCNN [15] established an end-to-end mapping
from LR to HR images, and subsequent innovations
such as residual learning in VDSR [13] and EDSR [16]
have significantly improved the performance of SR
systems by leveraging hierarchical feature representa-

tions. More recently, transformer-based models [17, 18]
have leveraged self-attention mechanisms to effectively
model long-range dependencies between pixels, further
advancing the state-of-the-art. However, these models
are typically trained with pixel-wise loss functions,
which tend to produce overly smooth outputs that
fail to reconstruct the critical high-frequency details
constituting edges and textures. This oversmoothing
limitation is particularly problematic for downstream
machine vision tasks where structural fidelity is essen-
tial. In addition, many of these high-performing models
are computationally intensive, creating a need for more
efficient, lightweight architectures suitable for real-time
applications on edge devices.

To address the oversmoothing limitation, recent
works have introduced edge-aware strategies to better
guide the SR process. Research in visual perception has
established that edge detection is one of the earliest
stages of human visual processing [19], and object
recognition depends primarily on edge-based structural
information rather than surface properties [20]. These
findings motivate the integration of explicit edge pri-
ors into SR networks. For instance, Nazeri et al. [21]
proposed an edge-informed loss that uses precom-
puted edge maps as priors during training. Similarly,
Wang et al. [22] introduced an Edge-Enhanced Fea-
ture Distillation Network (EFDN) that integrates edge-
preserving modules and loss functions for efficient yet
effective SR. Some methods [23, 24] reformulate the SR
problem as an image inpainting task, where the edge
generator first predicts the high-resolution edge map,
which then guides the texture and color reconstruction.
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Methods such as SRREdgeNet [25] and EdgeSR [26]
demonstrate that by leveraging edge-specific modules,
SR networks can better restore intricate boundaries and
features. Moreover, techniques like the Soft-Edge As-
sisted Network [27] show that adaptively learning edge
representations, rather than relying on fixed filters, can
yield more robust and generalizable models. However,
these approaches often introduce significant computa-
tional overhead through auxiliary edge prediction net-
works or require HR edge supervision during training,
limiting their practicality for real-time deployment.

Among learning-based techniques, the Enhanced
Deep Super-Resolution (EDSR) model is widely rec-
ognized as a state-of-the-art method for ISR [16]. By
eliminating batch normalization layers, EDSR reduces
undesirable artifacts and enhances the reconstruction
of fine image details. Furthermore, its residual learning
architecture mitigates the vanishing gradient problem,
enabling the effective training of deeper networks.
However, the standard EDSR model comprises approx-
imately 43 million parameters, resulting in substantial
computational demands that hinder its deployment in
resource-constrained environments. While a reduced
baseline version with 16 residual blocks offers a more
feasible alternative, this simplification often leads to a
drop in reconstruction quality due to limited model
capacity. These challenges highlight the need for an
efficient enhancement to the EDSR architecture that can
improve reconstruction quality, particularly for high-
frequency structural details, without substantial com-
putational overhead.

The importance of structural detail preservation be-
comes particularly evident in machine vision appli-
cations where fine textures and boundaries directly
impact recognition performance. Gesture recognition
systems, for example, rely heavily on the accurate
reconstruction of hand contours and finger positions
to distinguish between different gestures. When input
images are captured from long distances or with low-
cost sensors, the resulting low resolution can obscure
these critical details, significantly degrading recognition
accuracy. This motivates the development of SR meth-
ods that prioritize the reconstruction of structurally
significant features for downstream recognition tasks.

To address these challenges, this paper proposes
the Edge-Enhanced Deep Super-Resolution (E2DSR)
model, a task-aware framework that integrates explicit
edge guidance with a lightweight architecture. Our
approach incorporates a novel Edge Feature Enhance-
ment (EFE) block into a streamlined EDSR backbone
with 16 residual blocks. Unlike existing edge-guided
methods that employ separate auxiliary networks or
require HR edge supervision, the EFE block is a shal-
low, learnable module that extracts edge information
directly from the LR input using classical operators
(Sobel or Canny) and processes it through a multi-
path architecture with learnable fusion. This design
enables the network to explicitly preserve and recon-
struct structural features vital for machine perception
while adding only 86K parameters (4.8 increase) to
the baseline. As demonstrated in Figure 1, this focus

(a) Low resolution image (b) Bicubic

(c) EDSR (d) Our proposed

Figure 1. Comparison of gesture recognition results on a x4 super-
resolved image using different methods. The YOLOvV10 detector as-
signs varying confidence scores depending on the input quality. Our
proposed method achieves the highest confidence (0.86), outperform-
ing Bicubic (0.74), EDSR (0.69), and the original low-resolution input.

on structural detail translates directly to improved
performance on downstream tasks, achieving higher
confidence in gesture recognition compared to existing
SR methods. In summary, the key contributions of this
paper are summarized as follows:

« A task-aware super-resolution framework (E2DSR)
that integrates an explicit edge-enhancement mod-
ule with a deep residual network to prioritize the
reconstruction of structurally significant features.

o The design of a lightweight EFE Block to achieve
high-fidelity edge reconstruction without signifi-
cant computational overhead.

e A modern gesture recognition pipeline that
demonstrates the practical benefits of our SR model
in improving the accuracy of a state-of-the-art
YOLOV10 model.

e A comprehensive evaluation on multiple stan-
dard benchmarks that validates the superior
performance of our proposed model against
state-of-the-art methods, particularly in machine
vision applications.

The remainder of this paper is organized as follows.
Section Related Works describes a review of related
works in super-resolution, edge-guided image recon-
struction, and gesture recognition. Section Proposed
Method details the architecture of our proposed super-
resolution network - E2DSR, including the edge feature
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enhancement module and SR subnetworks. Section Ex-
perimental Results presents a comprehensive evalua-
tion of our method on various datasets, comparing it
with state-of-the-art approaches. Finally, Section Con-
clusion concludes the paper and discusses potential
directions for future research.

2 RELATED WORKS

2.1 Edge-Guided Super-Resolution

While deep learning has significantly advanced the
field of single-image super-resolution (SISR), a primary
challenge remains: models trained with standard pixel-
wise losses tend to produce overly smooth results,
failing to reconstruct the critical high-frequency details
that constitute edges and textures. State-of-the-art mod-
els like the EDSR model [16] remain a cornerstone in
single-image SR, utilizing deep residual networks and
pixel-shuffle upsampling for improved fidelity. While
effective in distortion-based metrics, it often produces
overly smoothed textures due to its sole reliance on
pixel-wise MSE loss. To address this, SRGAN [28]
introduced a perceptual loss and adversarial training
to prioritize perceptual quality over PSNR. Similarly,
RCAN [29] leveraged channel attention to preserve
fine details in challenging regions. A significant chal-
lenge in single-image SR is losing the high-frequency
details that define object structures. To address this,
many researchers have proposed edge-guided or edge-
enhanced methods that use edge information as an
explicit prior to guide the reconstruction process by in-
corporating high-frequency structure into SR pipelines.
Ye et al. [30] presents an edge-guided depth filling
method to interpolate depth values on the HR image
grids constrained by the acquired edges to prevent
predicting across the depth boundaries. The first and
most common approach is to use an auxiliary edge
prediction network. In this paradigm, a dedicated sub-
network first extracts or reconstructs an edge map
from the low-resolution (LR) input, which is then fused
with features in the main SR network. For instance,
SeaNet [27] introduced a “soft-edge reconstruction net-
work” (Edge-Net) to generate edge priors that assist in
the final image refinement. SRREdgeNet [25] proposed
a sequential pipeline where a dense edge detection
network processes the output of an initial SR model
before a final merge network combines them. Others,
like SESR [31], integrate Laplacian filters directly into
the loss function, guiding the model to recover spatial
gradients more accurately. These approaches recognize
that accurate edge recovery is critical for high-quality
SR. This strategy has been applied across different
domains, including models that predict depth edges
from LR depth and color images and those that use an
edge detection auxiliary network for infrared image SR.

A second strategy involves integrating edge pro-
cessing directly into the network architecture. Rather
than using a separate network, these methods incor-
porate edge-aware components into their core building
blocks. For example, EIPNet [24] embeds a lightweight

“edge block” at multiple scales within the SR net-
work to progressively provide structural information
during the upscaling process. A particularly efficient
approach is the re-parameterizable Edge-oriented Con-
volution Block (ECB) [32] proposed by ECBSR, which
uses a multi-branch design during training to learn
1st and 2nd-order spatial derivatives that are then
merged into a single, fast 3x3 convolution for infer-
ence. The third strategy enforces edge fidelity through
the training objective. Rather than relying solely on
architectural changes, these methods introduce spe-
cialized loss functions that explicitly penalize edge
inaccuracies. EFDN [33] introduced an “edge-enhanced
gradient loss” to explicitly penalize inaccuracies in the
gradient domain, forcing the network to preserve high-
frequency information during training better. Edge-
SR [26] presents a set of one-layer architectures de-
signed for image SR on edge devices. Hu et al. [34]
comprises the SR backbone network, which includes
a shallow features extraction module, a deep feature
extraction module, and a reconstruction module with
the edge detection auxiliary network (EDAN).

While these methods validate the importance of edge
priors, they often introduce significant trade-offs. Ap-
proaches with auxiliary networks such as SeaNet [27]
and SRREdgeNet [25] substantially increase model
complexity and inference time. Additionally, several
methods require HR edge maps as supervision dur-
ing training, limiting data preparation flexibility, while
fixed filter approaches lack adaptability for task-specific
edge representations. Our proposed E2DSR addresses
these limitations through a different design philosophy.
Unlike auxiliary network approaches, our Edge Feature
Enhancement (EFE) block is a shallow, learnable mod-
ule. The EFE block extracts edge information directly
from the LR input using Sobel or Canny operators,
eliminating the need for HR edge supervision. The
multi-path architecture with learnable fusion enables
adaptive combination of edge cues with contextual
information. This design achieves competitive recon-
struction quality with minimal inference overhead,
making our method suitable for real-time machine
vision applications.

2.2 Super-Resolution for Gesture Recognition

The performance of vision-based gesture recogni-
tion systems is fundamentally dependent on the qual-
ity of the input image. In many practical scenarios,
such as long-range human-robot interaction (HRI) or
when using low-cost sensors, images are often of low
resolution, which can obscure the fine details neces-
sary for accurate classification. To address this, super-
resolution (SR) and image enhancement techniques
have been employed as crucial pre-processing steps
to improve the clarity and detail of gesture images.
Recent work has highlighted the necessity of SR for
enabling gesture recognition at extended distances.
Bamani et al. [35] addresses the “Ultra-Range Gesture
Recognition (URGR)” problem, aiming for effective
recognition at distances up to 25 meters using only
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an RGB camera. They identify low resolution as the
primary challenge and propose a novel SR model,
HQ-Net, to specifically enhance the cropped image of
the user before classification. This approach is moti-
vated by the observation that general-purpose SR mod-
els like ESRGAN, while effective for some tasks, may
struggle with gestures by over-smoothing and distort-
ing indistinguishable features such as fingers. Similarly,
SR has been explored in the context of specialized
sensors. Chen et al. [36] tackles gesture recognition
using ultra-low-resolution infrared thermopile sensors,
where environmental temperatures can cause blurry
or missing finger contours. They employ a diffusion
model for image reconstruction to enhance gesture
area features and improve subsequent recognition ac-
curacy. In recognition-based applications [37], SR en-
hances spatial details and texture cues critical for robust
feature extraction—particularly when hardware limi-
tations, compression artifacts, or long-range imaging
compromise input quality. Low-resolution inputs can
severely impair the effectiveness of object detection
algorithms. By reconstructing fine-grained structures
such as edges, contours, and textures, SR facilitates the
accurate detection of small or distant objects, which is
particularly valuable in domains like surveillance, UAV
imagery, and autonomous systems [38].

Beyond single-frame enhancement, some frameworks
have leveraged temporal information in image se-
quences. Li et al. [39] proposes a gesture recognition
system based on multi-frame super-resolution, which
fuses feature information from multiple consecutive
frames to reconstruct a high-resolution gesture image.
This approach is designed to mitigate issues like mo-
tion blur that occur during rapid gesture transforma-
tions in dynamic environments. Other research has
explored super-resolution in alternative domains; for
example, Kushwaha et al. [40] developed an adaptive
super-resolution transform (ASLIT) to generate a high-
resolution time-frequency representation of a gesture
image, which is then used for classification. However,
these methods typically require large datasets of cor-
responding low- and high-resolution images for train-
ing, which are often unavailable for specific sensor
types, thus limiting the applicability of standard SR
techniques. In addition, sophisticated reconstruction
techniques can come with a high computational cost,
which is a barrier for real-time applications.

These limitations underscore the need for a task-
aware SR model that effectively preserves structurally-
critical features and is efficient enough for practical de-
ployment. Our work addresses this gap by integrating
edge-enhanced super-resolution with YOLOv10 [41],
a state-of-the-art real-time object detector, for gesture
recognition on the HaGRID dataset [42]. Unlike previ-
ous approaches using general-purpose SR models [35]
or sensor-specific architectures [36], our E2DSR explic-
itly preserves structural features critical for recognition.
This enables us to demonstrate the direct relationship
between edge-enhanced reconstruction and improved
recognition accuracy.

3 PROPOSED METHOD

3.1 Overview of the E2DSR Network

The goal of our proposed Edge-Enhanced Deep
Super-Resolution (E2DSR) network is to reconstruct
an HR image I;, from an LR input [;,, unlike stan-
dard models that primarily optimize for pixel-level
accuracy. E2DSR is designed to be task-aware, pri-
oritizing the restoration of high-frequency structural
details that are critical for downstream machine vision
tasks. Figure 2 illustrates two images of a similar scene
captured from different distances, along with their
corresponding edge maps and 2D Fourier transform
representations. As observed, the image captured from
a greater distance exhibits a notable reduction in high-
frequency components, resulting in degraded visual
quality compared to the image taken from a closer
proximity. Although deep learning-based SR models
are capable of learning high-frequency features im-
plicitly through end-to-end training and loss function
optimization, our experiments indicate that capturing
such features often incurs significant computational
overhead during training. In some cases, this added
complexity can even degrade output quality due to
ineffective feature learning or overfitting.

The overall architecture builds upon the proven ef-
fectiveness of the EDSR model, utilizing a streamlined
deep residual backbone to balance performance and
computational efficiency. The core of our contribution
is the integration of a novel Edge Feature Enhancement
(EFE) Block that operates in parallel with the main
feature-extraction path. This block explicitly extracts,
processes, and injects edge information into the net-
work, thereby providing direct guidance for recon-
structing sharp, coherent object boundaries. A funda-
mental consideration in our approach is that edge maps
are extracted directly from the low-resolution input,
which inherently contains degraded high-frequency in-
formation compared to the original high-resolution im-
age. Although downsampling reduces high-frequency

(a) Image from 3.5m  (b) High-frequency

feature

(c) Magnitude
spectrum

(d) Image from (e) High-frequency
10.5m feature

(f) Magnitude
spectrum

Figure 2. Illustration of images with various amounts of high-
frequency information due to the captured distance.
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details, the fundamental structural information en-
coded in edges, such as object boundaries, dominant
contours, and spatial relationships, is largely preserved
at a coarse level. In addition, the human visual system
relies heavily on edge information for object recog-
nition, and these salient structural cues remain iden-
tifiable even at reduced resolutions [20]. The Sobel
and Canny operators can still capture the approximate
locations and orientations of prominent edges from
LR inputs. Importantly, our approach does not aim to
recover an exact HR edge map; rather, the extracted
serve as spatial priors that guide the network’s atten-
tion toward structurally significant regions requiring
enhanced reconstruction.

Furthermore, our multi-path feature processing mod-
ule is specifically designed to compensate for LR edge
limitations. The feature extraction branch applies learn-
able convolution to enhance coarse edge information,
while the feature augmentation branch provides com-
plementary contextual information. The learned fu-
sion mechanism adaptively combines both branches,
enabling the network to refine the initial edge cues
beyond what is directly observable in the LR input.
This explicit guidance mechanism distinguishes our
approach from conventional models that learn such
features only implicitly.

3.2 Edge Feature Enhancement Block

The Edge Feature Enhancement (EFE) Block is the
core architectural contribution of our E2DSR model. It
is a lightweight module designed to explicitly extract,
process, and inject salient high-frequency edge features
from the initial LR input into the main network, pro-
viding direct structural guidance for the reconstruction.
The process is composed of two primary stages: edge
extraction and multi-path feature processing. Figure 3
illustrates the Edge Feature Enhancement Block, which
integrates alongside the residual convolutional blocks
to inject additional high-frequency information into
the low-resolution input, thereby enhancing the overall
reconstruction quality.

Figure 3. Architecture of our proposed EFE module for edge feature
learning.

3.2.1 Edge Extraction: Given a low-resolution input
image Ij,, the first step is to extract an initial edge map,
denoted as I,,. To further investigate the impact of
different edge detection techniques, two versions of our
model are implemented: 1) E2DSR_C, which integrates
edge information using the Canny algorithm, and 2)
E2DSR_S, which utilizes the Sobel algorithm for edge
enhancement. Firstly, the Sobel algorithm is applied to
our model, which is a gradient-based edge detection

technique that calculates the gradient of image intensity
at each pixel, emphasizing regions of rapid intensity
change, which are typically edges. This method approx-
imates the image gradient by convolving the input with
two 3 x 3 kernels, Gy for horizontal changes and G, for
vertical changes

-1 0 1 -1 -2 -1
Gr=|-2 0 2[,G,=|0 0 0. (U
~1 0 1 1 2 1

The corresponding gradient images, Iy and I are
computed as

Ly =Ir* Gy, Iy=1Ir*Gy, ()

where * denotes the 2D convolution operation. The
final edge map I, is the magnitude of the gradient

Igir = 1/[%-‘1-[?. 3)

Secondly, the Candy is a more refined, multi-stage
algorithm that produces cleaner and more continuous
edges. The first step is noise reduction, which begins by
smoothing the image to reduce noise and interference
with gradient calculation. This is typically done by
convolving the input image I;, with a 2D Gaussian filter
kernel, G,

1 2y

e 202

Golx,y) = 2702
Lsmootn = Iiy % Gg.

’ 4)

After that, the gradient magnitude M and direction 6
are calculated from the smoothed image, typically us-
ing Sobel operators, similar to the method described as

M= \/(Ismo"th * GX>2 + (Ismooth * Gy)zr
0 = umnz((lsmooth * Gy)/ (Ismooth * Gx))

To achieve thin, single-pixel-wide edges, the non-
maximum suppression step examines each pixel and
suppresses its values to zero if its magnitude is not
the maximum compared to its two neighbors along
the gradient direction 0. This ensures that only the
sharpest local peaks of the gradient remain. Finally,
two thresholds, a high (Tj) and a low (T;), are used to
distinguish between strong, weak, and non-edges. The
final edge map I, is formed by a conditional process

©)

1 if M(x,y) > Ty,
I (x ) N 1 if T; < M(x,y) < T,
elrity and is connected to a strong edge,

0 otherwise.

(6)
This preserves strong edges while also including weak
edges that are part of a continuous line, effectively
eliminating noise-related weak edges. The edge fea-
tures extracted by either the Sobel or Canny operator
are then passed to the subsequent feature-processing
module. This integration enriches the model’s ability
to perceive and retain structural details, ultimately
improving the super-resolution process and resulting in
higher recognition accuracy for the downstream gesture
recognition task.
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3.2.2 Multi-Path Feature Processing and Fusion: The ex-
tracted edge map I, is then fed to the multi-path mod-
ule to process the edge features at different scales and
contexts. This module consists of two parallel branches:

1) Feature extraction branch: This branch processes
the features at an upsampled scale to learn a rich
representation. Let the function for this branch be
denoted by H,y. The edge map is first upsam-
pled using nearest-neighbor interpolation Uy,
then passed through a convolutional layer with
a kernel size of 3 and 64 channels (W,yt, beyt), @
Scaled Exponential Linear Unit (SELU) activation
function [43] instead of the usual ReLU activation
function, and a Batch Normalization (BN) layer.
We specifically choose SELU to avoid the “dying
ReLU” problem and enable the learning of more
complex features within a shallow block [44].
Since the feature-extraction component consists of
a single convolutional layer, avoiding dying nodes
is essential to realize the model’s potential fully. In
this case, the SELU function maps all input nodes,
enabling the network to learn more complex fea-
tures that are typically achieved with a deeper
network. The SELU function is mathematically
described as follows

X if x>0

a(e*—1) ifx<0’ @)

SELU(x) = A {
where A and & are both constant with the ap-
proximate value of 1.6733 and 1.0507, respectively.
As described above, the SELU function has a soft
exponential tail for negative x values, which helps
neurons continue learning even with negative
activations rather than dying, unlike the ReLU.
Finally, the proposed model incorporates a batch
normalization layer to stabilize and accelerate
training. The output of this branch, F, is given by

Fort = BN(SELU(WExt * Z/{m’l(lelr) -+ bext))- (8)

2) Feature augmentation: This branch provides
multi-scale contextual information. Let its func-
tion be Hgyue. The edge map is passed through a
convolutional layer (Wayg, baug) and then a bicubic
interpolation layer ({,.) to upsample the features
while preserving smoothness. This provides struc-
tural context to guide the final reconstruction. The
output leg, can be written as

Faug = ubc(waug * Lo + bﬂug)' ©)

Finally, the outputs of these two branches are fused.
First, they are combined element-wise via addition.
This combined feature map is then passed through
a final fusion block, Hy,s, which consists of another
sequence of convolution, SELU activation, and batch
normalization, to learn the optimal combination of the
features. The entire fusion process yields the final edge
feature map, F,

Ffused = Fext + Fuug/

(10)
F = Hfuse(Ffused)'

The complete operation of the EFE block, which
transforms the input LR image into a high-level edge
feature map, can be summarized by the function A(-) as

Fo = A(I). (11)

3.3 Overall EFE Super Resolution Network
Architecture

The architecture of the proposed Edge-Enhanced
EDSR (E2DSR) model is designed to reconstruct an
HR image I;, with enhanced visual quality from a
given low-resolution input Ij,, as shown in Figure 4.
Our approach builds upon the deep residual learn-
ing framework originally introduced by EDSR, but
with key modifications to explicitly integrate high-
frequency edge information and improve computa-
tional efficiency.

The backbone of our E2DSR model is a streamlined
deep residual network. To balance reconstruction qual-
ity and computational cost, we employ a 16-layer resid-
ual architecture. This provides sufficient depth to learn
complex mappings between low- and high-resolution
images while maintaining a manageable number of
parameters suitable for practical applications. Similar
to the original EDSR, our model leverages a residual
learning framework where skip connections are used
to ensure stable information flow across layers. This
design mitigates the vanishing gradient problem com-
monly encountered in deep neural networks, thereby
enabling effective training.

The primary architectural innovation of E2DSR is
the integration of the Edge Feature Enhancement (EFE)
Block, as detailed in the previous section. Unlike
the standard EDSR [16] architecture, which implicitly
learns features in the pixel domain, our model incorpo-
rates a parallel path that explicitly captures and refines
edge information. The feature map generated by the
EFE Block, which is rich in high-frequency structural
details, is fused with the output of the main residual
backbone. This fusion provides direct, explicit guidance
to the network, thereby enabling it to better preserve
and reconstruct sharp edges and fine textures that
are critical for both visual sharpness and downstream
recognition tasks.

Finally, the fused feature map, enriched with both
deep contextual features and explicit edge information,
is passed to an upsampling module. Following modern
efficient designs, upsampling is performed at the end
of the network using a pixel-shuffle layer to generate
the final high-resolution output image, I .

3.4 E2DSR-based Gesture Recognition Application

To evaluate the effectiveness of the proposed E2DSR
model in a practical machine-vision context, we inte-
grate it into a gesture-recognition pipeline. This down-
stream task is an ideal test case, as accurate classifica-
tion of hand gestures depends heavily on the clarity
of fine-grained details, such as finger position and
contour, which are often lost in low-resolution imagery.
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Figure 4. Architecture of the proposed Edge-Enhanced Deep Super-Resolution (E2DSR) network. The model consists of a streamlined residual
backbone and a parallel Edge Feature Enhancement (EFE) block. The EFE block extracts and refines edge features from the low-resolution
input, which are then fused with deep features from the backbone to explicitly guide the reconstruction of the final high-resolution image via

a pixel-shuffle upsampler.

Figure 5. Pipeline for machine gesture recognition task with the use
of E2DSR.

The proposed pipeline, illustrated in Figure 5, first
enhances the quality of the input image using E2DSR
and then passes the super-resolved output to a state-of-
the-art object detector for classification. For the recogni-
tion component, we employ YOLOv10 [41], a real-time,
end-to-end object detection model that represents the
latest advancement in the YOLO family. We selected
YOLOV10 for its excellent balance of speed and preci-
sion, making it highly suitable for real-time applications
on both cloud systems and edge devices.

As illustrated in the pipeline, the process begins by
improving the input image quality using the E2DSR
model with a super-resolution scale factor of 4x. The
enhanced images are then passed to the YOLOv10
model for gesture recognition. The detector is trained to
classify four specific gesture classes from the HaGRID
dataset [42]): palm, two up, two up inverted, and stop.
This experimental setup enables us to directly and
quantitatively assess how the architectural improve-
ments of E2DSR affect the performance of a high-level
machine-vision task.

4 EXPERIMENTAL RESULTS

4.1 Dataset and Metrics

To evaluate general image enhancement capabilities
of our model, we used five standard super-resolution
benchmark datasets: Set 5 [45], Set 14 [46], Urban
100 [47], BSD 100 [48], and DIV2K [49]. For the down-

stream task, we created a custom subset from the
HaGRID dataset [42] for gesture recognition, containing
7,138 images across four gesture classes: palm, two up,
two up inverted, and stop, which is shown in Table L

Table 1
DISTRIBUTION OF IMAGES ACROSS THE FOUR GESTURE CLASSES IN OUR
cusToM HAGRID SUBSET USED FOR THE RECOGNITION TASK

Gesture Number
Palm 1770
Two up 1855
Two up inverted 1765
Stop 1748
Total 7138

We assessed image reconstruction quality using the
Peak Signal-to-Noise Ratio (PSNR) and the Structural
Similarity Index Measure (SSIM). For the downstream
gesture recognition task, we evaluate the detector’s
performance using mean Average Precision (mAP).
PSNR is used to measure the pixel-wise reconstruction
quality. It is defined based on the Mean Squared Error
(MSE) between the ground-truth HR image (Ij,) and
the super-resolved image (I)

MSE = Z Z Inr(i,j) — Ise (i )% (12)
=0 j=0
PSNR is then calculated a
MAX?

where MAX| is the maximum possible pixel value of
the image. A higher PSNR value indicates a better
quality of reconstruction. Structural Similarity Index
Measure (SSIM) evaluates the perceptual similarity be-
tween two images by considering luminance, contrast,
and structure. The SSIM index is calculated as

(ZVX.”y +c1) (Z‘Txy +c2)

SSIM ’ - 7
W) = ta e T a) @ ot o)

(14)
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where p, and p, are the local mean, oy and o, are
the standard deviations, and oyy is the cross-covariance
for image windows x and y. The constants ¢; and ¢,
are included to stabilize the division. The SSIM value
ranges from —1 to 1, where 1 indicates perfect struc-
tural similarity. Mean Average Precision (mAP) is the
primary metric for evaluating object detection model
performance in the gesture recognition task. It is based
on the concepts of Precision and Recall

TP TP

1 Recll= ———— @
prrp el =gy (1D

where TP, FP, and FN are the counts of true positives,
false positives, and false negatives, respectively. The
Average Precision (AP) for a single class is calculated as
the area under the precision-recall curve. The mAP is
then the mean of the AP values across all gesture classes

Precision =

N
mAP = % Y AP;. (16)
i=1

For training, we use a dataset S consist of N pair
of low-resolution image I;, and high-resolution image
Iy, with S = (I |Iy,), During training, we used a
batch size of 16 with the Adam optimizer. The learning
rate was initialized at 10~% and have every 10> batch
updates. We used the MSE as the loss function for
all models to ensure that performance differences are
attributable to architectural changes rather than the
training objective

L = arg nbin MSE(1;,, I,)

1Y ; ;
= argmin Yo llfo(Ir,) — I, 1% (17)
i3

where I, = fy(I},) denotes the super-resolved output.

4.2 Quantitative and Qualitative Comparison

To evaluate the quality improvements achieved by
the proposed method, we compared it against five
widely-used SR techniques: Bicubic interpolation [6],
VDSR [13], SRCNN [15], SRResNet [28], EDSR [16],
and SWinIR [50]. All models were trained on the same
dataset to ensure a fair comparison.

As shown in Table II, the E2DSR models (E2DSR_S
using Sobel and E2DSR_C using Canny) achieve com-
petitive PSNR and SSIM scores across all benchmark
datasets. In particular, compared with bicubic inter-
polation, E2DSR yields an approximately 2.7 dB im-
provement in PSNR. Average PSNR for both E2DSR_S
and E2DSR_C (28.72) is the highest among all models,
indicating strong overall performance. Compared to
the baseline EDSR, our method provides a consistent,
albeit modest, improvement in these distortion-based
metrics, with an average PSNR gain of 0.09 dB. This im-
provement is small but consistent, showing that E2DSR
methods provide further refinement on a strong base-
line. These findings highlight the effectiveness of in-
corporating high-frequency information, which signif-
icantly enhances the quality of szuper-resolved im-
ages. We also compare our method with SwinlR, a re-

cent transformer-based state-of-the-art super-resolution
method that leverages self-attention mechanisms to
capture long-range dependencies. As expected, SwinIR
achieves higher PSNR and SSIM scores across most
benchmark datasets, consistent with its design objective
of maximizing reconstruction quality through global
attention mechanisms. However, this performance
advantage comes at a significant computational cost.

To assess the computational complexity of the pro-
posed method, we measure inference time on an
NVIDIA Tesla T4 GPU, along with the number of pa-
rameters and multiply—accumulate operations (MACs),
as reported in Table IIl. The addition of the EFE
block introduces a moderate computational overhead
compared to the streamlined EDSR baseline, includ-
ing an increase in parameters and MACs. SwinIR
requires 37.99 ms for inference, which is approx-
imately 4.5x slower than our E2DSR_S (8.41 ms)
and 6.4x slower than the baseline EDSR (5.98 ms).
While our E2DSR models introduce a moderate com-
putational overhead compared to EDSR due to the
addition of the EFE block, they remain significantly
more efficient than transformer-based approaches. This
trade-off between reconstruction quality and computa-
tional efficiency is central to our design philosophy.
The primary objective of E2DSR is not to maximize
PSNR/SSIM metrics, but rather to enhance perfor-
mance on downstream machine vision tasks while
maintaining practical inference speeds.

The visual comparisons in Figure 6 further under-
score the benefits of our approach. In challenging
images with fine textures and repeating geometric pat-
terns (e.g., img_008 from Urban100), our E2DSR model
reconstructs visibly sharper edges and more coherent
structures compared to the baseline EDSR and other
methods. These results confirm that the EFE block
enables the model to better preserve the high-frequency
details that are critical for perceptual quality.

4.3 Gesture Recognition Assessment

The primary goal of our task-aware model is to
improve performance on downstream machine vision
tasks. Table IV presents the assessment of gesture recog-
nition in the HaGRID data set. As shown, the E2DSR
model yields a substantial improvement in recognition
accuracy, increasing from 0.336 (LR input) to 0.822.
For the “Palm” gesture, E2DSR_S achieves a notable
mARP of 0.838, which is significantly higher than Bicubic
(0.743) and LR (0.400), showing its strong capability
to enhance the features of fine gestures. The most
challenging gesture, “Two up inverted”, also benefits
from E2DSR_S (0.798 vs. Bicubic’s 0.770), indicating
the method’s robustness even in more complex or less
common cases. This significant gain is a key finding of
our work. It demonstrates that the architectural focus
on enhancing edge and structural fidelity directly yields
a more effective feature representation for the YOLOv10
recognition model, thereby validating our task-aware
design philosophy.
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Figure 6. Qualitative comparison of our models with other works on x4 super-resolution. Red indicates the best performance, and blue indicates

the second-best.

5 CoNCLUSION

In this paper, we introduce E2DSR, an edge-enhanced
deep residual network for image super-resolution, de-
signed to bridge the gap between models optimized for
perceptual quality and the requirements of downstream
machine-vision tasks. By integrating an explicit Edge
Feature Enhancement (EFE) block into a streamlined
EDSR backbone, our model effectively combines both
pixel-level and high-frequency edge cues. This task-
aware approach enables an improved reconstruction
of the critical structural features that are often lost
in standard super-resolution methods. Experimental

results confirmed that E2DSR outperforms the baseline
EDSR and other SR models in terms of both visual
quality and task-specific accuracy. Most notably, inte-
grating E2DSR into a gesture recognition pipeline sig-
nificantly improved accuracy, increasing mean Average
Precision (mAP) from 0.776 to 0.822. These findings
validate that our architectural focus on explicit edge
guidance provides a direct and substantial benefit to
machine perception tasks.

The primary limitation of the current approach is the
moderate increase in computational complexity from
the EFE block. Future work will focus on reducing
this overhead through model optimization techniques,
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Table II
OBJECTIVE QUALITY ASSESSMENT WITH VARIOUS SR MODELS (PSNR/SSIM)
Dataset Bicubic [6] | VDSR[13] | SRCNN [15] | SRResNet [28]| EDSR [16] | SwinIR [50] E2DSR_S E2DSR_C
Set 5 [45] 25.86/ 29.19/ 28.55/ 29.47/ 29.70/ 29.88/ 29.79/ 29.80/
0.7483 0.8435 0.8255 0.8397 0.8522 0.8556 0.8550 0.8550
Set 14 [46] 23.79/ 26.00/ 25.59/ 26.26/ 26.30/ 26.43/ 26.37/ 26.36/
€ 0.6427 0.7289 0.7144 0.7352 0.7375 0.7143 0.7406 0.7407
Urban 21.25/ 23.66/ 2293/ 23.81/ 2397/ 24.18/ 24.15/ 2413/
100 [47] 0.6098 0.7279 0.6942 0.7344 0.7436 0.7523 0.7507 0.7498
BSD 24.87/ 26.74/ 26.35/ 26.92/ 26.95/ 27.05/ 27.01/ 27.00/
100 [48] 0.6465 0.7275 0.7151 0.7334 0.7352 0.7390 0.7374 0.7372
DIV2K [49] 26.88/ 27.15/ 26.49/ 27.62/ 27.62/ 27.81/ 27.76/ 27.79/
0.7365 0.8259 0.8041 0.8366 0.8367 0.8418 0.8408 0.8418
33.37/ 36.93/ 35.57/ 36.03/ 37.22/ 37.26/ 37.23/ 37.25/
HaGRID [42] 0.8988 0.9308 0.9177 0.9197 0.9327 0.9332 0.9334 0.9334
Average 26.00/ 28.28/ 27.58/ 28.35/ 28.63/ 28.77/ 28.72/ 28.72/
& 0.7138 0.7973 0.7785 0.7999 0.8070 0.8060 0.8096 0.8096
Note: Bold indicates the best performance, and underlining indicates the second-best.
Table III
COMPARISON OF COMPUTATIONAL COMPLEXITY

Models Time Process (GPU) Params MACs

SRCNN [15] 1.43 ms 69 K 1.56 G

VDSR [13] 4.12 ms 667 K 15.06 G

SRResNet [28] 10.60 ms 1547 K 5047 G

EDSR [16] 5.98 ms 1776 K 29.47 G

SwinIR [50] 37.99 ms 897 K 33.49 G

E2DSR_S 8.41 ms 1862 K 39.62 G

E2DSR_C 8.88 ms 1862 K 39.62 G

Table IV

GESTURE RECOGNITION ASSESSMENT

Gesture LR image | Bicubic [6] E2DSR_S

Palm 0.400 0.743 0.838

Two up 0.346 0.785 0.826

Two up inverted | 0.320 0.770 0.798 (3]
Stop 0.398 0.808 0.826

Average 0.366 0.776 0.822

(4]

such as network pruning and quantization, to develop
a more lightweight architecture suitable for real-time
deployment on edge devices. Furthermore, we plan to
explore the application of the E2DSR framework to
other machine-vision domains in which high-fidelity
edge reconstruction is critical.
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